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Programming begins with the specification of what the desired program should do; the
programmer's job Is $o develop an executable program satisfying those specifications. The
goal of automatic-programming research is to formalize the methods and strategies used
by programmers so that they may be Incorporated In an automatic, or Interactive,

programming environment.

While most automatic-programming research has focused on the creation of programs

ex nrilo, very little of this work concentrates on applying past experience to new
problems. Typically, a programmer directs more of his effort at the modification of
programs that have already been written than at the development of original programs.

The evolutionary cycle of a program Includes debugging, changes to meet amended
specifications, and extensions for expanded capabilities. Even when nominally engaged in

the construction of a new program, the programmer Is constantly recycling Oused m

programs and adapting basic principles that have already been Incorporated Into other
programs. Ideas of general applicability are abstracted Into subroutines or programming

techniques and then applied to specific problems at hand.

In this research, we have attempted to emulate the evolutionary aspects of
programming In the context of an automatic program-development system. We have

formulated techniques of program modification, whereby a given program that achieves one

goal can be transformed into a new program to achieve a different goal. The essence of

the approach is to find an analogy between two sets of specifications, those of a program

that has already been constructed and those of the program that we desire to construct.
This analogy is then used as the basis for transforming the existing program to meet the

new specifications. Program debugging Is considered as a special case of modification: if a

program computes wrong results, It must be modified to achieve the intended results.

Program modification Is not the only manner In which a programmer utilizes previously
acquired knowledge. The human programmer improves with experience by assimilating
various programming methods that he encounters, and judiciously applying the learned
Ideas to new problems. After coming up with several modifications of his first "wheel", he
is likely to formulate for himself (and perhaps for others) an abstract notion of the
underlying principle and reuse It In new, but related, applications. Program schemata are a
convenient form for remembering such programming knowledge. A schema may embody
basic programming techniques and strategies (e.g. the generate-and-test paradigm or the

binary-search technique) and contains abstract predicate, function, and constant symbols,

In terms of which Its specification is stated.

iN
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INTRODUCTION 3

The bstracton of a set of concrete programs to obtain a program schema and the
instantiaton of abstract schemata to solve concrete problems may be viewed from the
perspective of modification techniques. This perspective provides a methodology for
applying old knowledge to new problems. Beginning with a set of programs sharing some
basic strategy and their correctness proofs, a program schema that represents the
embedded technique is sought. Preconditions for the schema's applicability are also
derived from the correctness proofs. The schema's abstract specification may then be
compared with a given concrete specification and an instantiation found that, when applied
to the schema, yields a concrete program. If the nstantation satisfies the preconditions,
then the correctness of the new program is guaranteed.

Extending a program to satisfy additional specifications is another form of program
modification. Techniques are required to construct code that extends the Incomplete
program to achieve the remaining specifications, while ensuring that the original
specifications continue to be satisfied. Modification based on analogy and extension can
be combined to solve a given problem. The analogy between a new problem and a given
program may only indicate how to achieve part of the specified goal; the transformed
program is then extended to achieve the remainder.

Sometimes, in the course of modifying a program or Instantiating a schema, It may turn
out that a program segment, e.g. a loop initialization, must be constructed from scratch.
Top-down synthesis techniques are useful for this purpose. Beginning with the specifications
of the desired segment, the goal is to develop the program step by step until executable
code Is obtained. Each step consists of rewriting a segment of the program in Increased
detail. Since every step is transparent enough to ensure correctness, each partial
program In the series is equivalent to its predecessor. In particular, the final program Is
guaranteed to satisfy the initial specifications.

A prerequisite for debugging an Incorrect program is knowledge about what the
program actually does, as opposed to what it was intended to do. Moreover, various facts
about a program are frequently needed for the purposes of modification, though they were
not supplied by the programmer. For these purposes, we devote attention to the
development of annaeftin techniq s for documenting a program with assertins. Assertlons
are a useful means of documenting facts about the internal workings of a program; they
relate to specific points in the program and assert that some roation holds for the current
values of the program variables whenever control passes through that point. Given a
program along with its Input-output specification, the task is to annotate the program
Incrementally with assertions that explain the actual workings of the program regardless of

.,..-- - - --.. . ....



4

whether the program Is correct. These annotations can be used as aids in the debugging
of an incorrect program. They can also be used for verifying the correctness of programs

or for analyzing program efficiency. Our annotation techniques are formulated as inference

rules.

The techniques .of program manipulation that we have investigated are for the most
part amenable to automation, and we have implemented them in an experimental system,

written in OLISP. Our implementation consists of three parts: modifier, annotator, and
sywtheisztr. The Implementation was meant to serve as a proving ground for Ideas; many of

the examples presented in this report have run successfully. The modifier has, for
example, modified an integer square-root program to compute quotients and has debugged
an Incorrect real-division program. Our annotator can generate the necessary invariants

for these programs, and for more complex programs, e.g. selection sort. The synthesizer
has successfully constructed several complete programs, such as one for finding the
minimal element of an array, or for finding Its value.

The next chapter presents a general overview of the various aspects of program
modification; their Individual roles and their close interaction are Illustrated in an account

of the evolution of an example program. The remainder of this report is composed of

chapters on techniques for
* modification and debugging,

* abstraction and instantlatlon,

* synthesis, and

S annotation.
Each of these chapters is largely self-contained, though a common set of examples Is

threaded through them. Bibliographic remarks are included in the Individual sections.

I.
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In this overview we shall trace the life-cycle of a single example program, In an
attempt to Impart the overall flavor of our approach to program modification, and to
Illustrate how the various aspects are Interrelated. More formal treatments of our
techniques may be found In the Individual chapters. This example Is outlined in Figure 1; it

owes Its motivation to Wensley [1959] and Dijkstra [1976].

bad real-division program

debugging
(using annotation)

good real-division programp I~ei o
W. .mod~ilq!ion

real square-root program

I I

binary-search schema

Instantiation
(using synthesis)

integer square-root program

Figure 1. Evolution of a division program

We begin with an Imperfect program to compute the quotient of two real numbers. We

then debug the program, after determining enough about what the program actually does.
Once the division program is corrected, It Is modified to compute the square-root of a real
number. Underlying both the division and square-root program is the binary-search

!° technique; by abstracting these two programs, a binary-search schema is obtained. This
schema Is then instantiated to obtain a third program, one to compute the square-root of an
Integer. Part of that program is synthesized from scratch.

A. 



GENERAL OVERVIEW 7

I. Th Proelim

Consider the problem of computing the quotient z of two nonnegative real numbers c
and d within a specified (positive) tolerance e. These specifications are conveniently
expressed In a high-level assertion language in terms of an output specification and an input
specification. The output specification states the desired relationship among the program
variables upon termination. In nur case, the output specification

Ic/d-zI<e

Indicates that the (absolute value of the) difference between the exact value of c/d and
the result z should be less than e. The Input specification defines the set of Inputs on
which the program is Intended to operate. Assuming that we only wish to solve this
problem for the case where the numerator c is smaller than the denominator d, the
appropriate input specification for the prograim is

Oc(<d A eO>0

We can express our goal in the form of the following skeleton program:
I I

P,: begin comment real-division program

assert Oc(d, e>O I
achieve kld-zl(e varying z

I e.n I

The achieve statement,

achieve k/d-zI<e varying z

specifies the relation between the variables z, c, d, and e that we wish to attain at
the end of program execution. The clause

varying z

Indicates that only the variable z may be set by the program; the variaoles C, d, and e
contain input values that may not be modified. The assert statement,

assert O5c(d, e)O

attached to the beginning of the program, specifies what relation between the Input
variables may be assumed to always hold at the beginning of program execution.

An achieve statement may be considered as a "very high-level" programming
construct that "somehow" achieves the specified relation at that point In the program. It
Is not directly executable; the task of the programmer- be he human or machine - is to

-.



w 6

systematically transform the achieve statement into an executable program by replacing

it with more concrete code. If the replacement itself contains achieve statements, then
the process iterates, step by step, until a machine-executable program Is obtained that

contains only primitive statements and operators. This final program will be of the form

P,: begin comment rtal-divslion program

assert Osc<d, )0

purpose Ic/d-le
i code

suggest kld-zl(e

end I

The purpose statement,

purpose kld-zl(e

is a comment describing what the intent of the code following it is. The statement

suggest k/d-zl<e

contains the programmer's contention that the preceding code actually achieves the

desired relation, i.e. the relation Ic/d-zl<e holds for the value of z when control reaches

the end of the program.

When an assertion, such as kld-zI<e, has been proved to hold each time control
passes through some point, then it is said to be an invariant assertion at that point. As long

as it has not been proved to hold, it is called a candidate. In particular, an output candidate,
associated with the point of termination, is a local invariant at that point, if the final values
of the variables satisfy the asserted relation when the program terminates. The assertion

Is termed an output invariant once this has been proved to be the case. A program, then,
may be considered correct if there exist output Invariants that Imply the output

specification.

For the problem at hand, we must assume that no general real-division operator / is
available, though division by an integer is permissible. Otherwise, the problem could be

solved with a trivial assignment statement

z :- c/d

The reader may also note that, were it not for the restriction that only the variable z may

be set by the program, the problem could be solved, for example, by setting both z and C

to 0. This would satisfy the specification kld-zj(#, but is not the intended solutlon.

,b. •Now let us assume that a programmer went ahead end constructed the following
program:

1b



GENERAL OVERVIEW 9

P,: begin comment suggested dimlom preem

B: assert Oft<d, #>O

purpose kId-zl(e
purpose zScId, cld<z.y, ye
(Z, Y) :- (0, 1)

loop L,: suggest r.%ld, cldzy

until YS#

if d.(z:y)Sc then z :- z~y ft
Y:- Y/2

repeat

suggest zScId, c/d(x*., yS#
A,: suggest kld-zI<0

end

The comment

purpose Zscld, cld(z.+, yS,

Indicates that the programmer's intontion Is to achieve the desired relation k/d-zl<e by
achieving the three subgoals z.Sld, cld(z+.y, and ySe. Achieving these relations Is
sufficient for Ic/d-zJ<* to hold. To achieve them, the programmer constructed an iterative
loop intended to keep the first two relations invariantly true while making progress towards
the third. The Intended loop Invarlants are given in the statement

suggest zc/d, cld<:.y

at the label L, ; they are first Initialized by the multiple assignment

(r,Y) - (0,) 

since both S/d and c/d(O.I are Implied by the assumption that OSc(d. The two
loop-body statements

if d.(z.,)sc then z :a z*y f
:- Y/2

are then repeated until the test

I. until ,Se

L ".
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becomes true, at which point the loop Is left.'

For the candidates

suggest zrcld, cld(z.,

to be loop Invariants, they must hold when the loop is first entered and must remain true
each subsequent time control returns to the beginning of the loop. Though we have seen
that they do hold initially, it has not yet been verified that they remain true.
Consequently, It Is also not known if the output candidate k/d-zl<e is invariant. In fact,
by running the program with c-I , d=3, and m1l/3, for instance, the programmer may

discover that the result z=O does not satisfy I/d-z*e<. Since these values for the
variables satisfy the Input specification, but do not satisfy the output specification, the
program Is Incorrect. The bug presumably occurred when the programmer "inadvertently"

interchanged the two statements within the loop.

t

2. Annotation

We know what this program was intended to do. However, before we can debug it, we
must know more about what it actually does. This will be accomplished by examining the
code, trying to extract as many relations between the variables as we can, and annotating
the program with the discovered relations.

Our techniques for program annotation are discussed in more detail in the chapter on
annotation. There they are expressed as Inference rules: the antecedents of each rule
are usually annotated program segments and the consequent is either an Invariant or a
Vandidate. These rules have been implemented; the automatic annotation of a similar
program Is shown in the appendix on implementation.

As a first step, we note that the input variables c, d , and e are not changed by the
program. Therefore the Input assertion

assert 0c<d, e>O

holds throughout execution of the program. Such an assertion is termed a global in"ariant

of the program; we write

assert 0c(d, 0>0 In P,

*The loop-unl-repeat construct we use is based on the suggestion of J. Ole-Dahl in Knuth (1974];

achieve statemnts we e used by Sussman [1975].

1-



GZNRAL OVERVIZW 1

We now try to determine the range of the two program variables , and z. The
assignments to y in the program P, are

:" I y :- y/2•

The variable y Is initialized to I before the loop and Is repeatedly divided by 2 within

the loop. It follows that y=1I/2", where n is some nonnegative Integer indicating the
number of times that y has been halved.

in dealing with sets, we find the following notation convenient: Let f(s,. sit ... 00
be any expression containing occurrences of m distinct subexpresslons sa, S t . SM

The set of elements

f(s, s, ..... s,): s,$, sto . .u. s. }

Is denoted by

f(SO, , ... I, S )

Using this notation, we say that y belongs to the set I/24, where N is the set of
nonnegative integers. Since this relation3 holds throughout the program P, from the point

when the assignment p:-I is first executed, we may assert the global Invariant

assert yel/ 2
N in P,

From this invariant ope can derive both an upper and lower bound on y. At one

extreme Y=1/20=1 , and at the other extreme - as the exponent increases - the value nt
y approaches 0. Thus, we

assert 0(ySI In P,

The program contains two assignments to the variable z,

z:O Z:=z+y.

* Since we have already determined that y is always of the form /2" , it follows that z
must be a sum of some finite number (possibly zero) of elements of that form. This does

* not tell too much about x ; it does, though, give the lower bound
I

assert z>O in P,,

since y is always positive.

, .-- ,, ,
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The loop terminates when the exit test y e becomes true. Thus, whenever control
reaches the label E, , the relation y.e must hold. This Is expressed by the local Lnvariant

E,: assert Y<e .

Similarly, if the exit test is not taken and the loop body is executed, then the exit test
must have been false, i.e. y>e.

Neither branch of the conditional statement affects , nd therefore the relation Y~e
holds after the conditional statement as well. At that point y is divided by 2 . If before
the division we had y>e, then at the end of the loop body we have 2.y>e. So, whenever

the loop body is executed control returns to the head of the loop with the relation 2-y)e
holding. Since that relation does not necessarily hold when the loop is first entered with
y= I , It Is not a loop invariant. Nevertheless, the disjunction of the relations y- I and

2.y>e is a loop invariant, since one relation holds when the loop is first entered and the
other holds every time the loop is repeated, I.e. we haveI

L,: assert y=1V2.y>e

Consider the conditional statement

if d.(z+y)Sc then z :- z+y fi

It is an abbreviation of the statement

if d.(z+y)Sc then z :- z~y else fi

which has an empty else-branch. The then-path of the conditional statement is taken
when d.(zy)<c ; therefore, after resetting z to z+y we have d-z.c . Since the
programmer Introduced the conditional statement to achieve some specific relation in

different cases, It is plausible that the relation d-zsc - achieved by the then-path of the
conditional - Is the Intended relation and holds for the else-path as well. This suggests
the candidate

L,: sUggest dozSc

Indeed, since d'z.c Is true Initially, when z-O and ckO, and Is unaffected when the
conditional test is false (since the value of z Is not changed), It invariantly holds when
control reaches the head of the loop. We have derived the loop Invariant:

L, assert d.zSc

The then-path Is not taken when c(d.(zy). in that case , is divided in half and z

, - - .. - -. _ . . . .-



GENERA, OVERVIEW 13

is left unchanged, yielding c(d'(z+2,y) at the end of the current Iteration. It turns out
that the thea-path preserves this relation and that It also holds upon Initialization. Thus
we have the additional Invariant:

LO: assert c(d.(z+2.,)

The loop Invarlants d-zSc and c(d.(z+2.y) remain true when the loop exited is taken;
along with the exit test T, ,, they imply that upon termination of the program the output
Invariant

E,: &art k/d-z<2.e

holds. Note that the desired relation icId-zl( Is not Implied.

The annotated program - with invariants that correctly express what the program
does- is:

SI I' l

assert Ogc(d, )O, yeI/2N, ziO in
P,: begin comment aRnotated bad d oivisi program

B,: assert OSc<d, e

(zy) :" (0, 1)
loop L,: assert d'z c, c(d.(z.2-y), y-IV2-y> ,

j suggest d.zSc, c(d.(z*y)

Iuntil ySe

if d.(z y)Sc then z = z fi
I y :" y/2

I repeat

E,: assert k/d-4(2.e

suggest k/d-zl(
I en. .

We have omitted the purpose statements to avoid clutter.

I.

I.

. . . . . -N.
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3. Debugging

Now that we know something about what the program does, we can try to debug it.
Our task Is to find a correction that transforms the actual output Invariant

assert k/d-zl<2..

into the desired output candidate

sugest k/d-z(e.

We shall then apply that transformation to the program In an attempt to derive a correct
program.

Accordingly, we would like to modify the program in such a manner as to transform the
insufficient ic/d-zi<2.e Into the desired ic/d-zi<t ; we write

k/d-zl(2.e * Ic/d-zl(e

The obvious difference between the two expressions, is that where the first has 2-e . the
second has just e. So, to transform Icld-z<2.e into Icd-zl(e , we need only transform

2e ,e,

leaving the other symbols unchanged. This may be accomplished by replacing e with t/2,
i.e. by applying the transfomation e a e/2 . In this manner, we get

Ic/d-zl<2.e :i k/d-zl<2"e/2 i k/d-ziu e

We see that the transformation e a*2, applied to the output invariant k/d-zI(24,
yields the desired output specification kc/d-zI<. That same transformation is now applied

to the whole annotated program (excluding the programmer's suggestions). The symbol e
appears once in the program text: the exit clause

until Y e

accordingly becomes

until y<#/2

The symbol also appears four times in the Invariants; for example, the input assertion e>O
transforms into */2)0 which is equivalent to 00.

The transformed program is

L i
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assert 0c(d, 00, yal/26, zk0 in
Pt: begin comment corected di~sto program

B,: assert OSc(d, 00

loop L,: assert d.zc, c(d.(z#27 ). y-1V47>t
suggest d-zSc, c(d'(z.,)
until yS#i2

I if d.(z.,) c then z :- z*p ft

I repeat
i .: assert kld-l<e

suggest kld-ZI<e
l end.

In an appendix, it is proved a transformation such as e ,s e/2 preserves the relation
between the program text and invariants, i.e. the transformed assertions. are invariants of
the transformed program.

In this manner, we have modified the program to achieve the intended result Icid-zI(e.
But note that the loop invariant still differs from that suggested by the programmer. The
difference between the two is that the programmer intended for c(d-(z+y) to be true,
while In fact c(d.(z+2.y) holds. This can be remedied by applying the transformation

y "* y/2•

The variable y appears five times In the program code: The exit clause becomes

until y/2se/2

or equivalently

until Oe

The conditional statement becomes

if d.(z+y12)sc then z :-z.,/2 ft

The assignment statement

,:-I

transforms Into

17/
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which, however, is not a legal assignment, since an expression appears on the left-hand

side. The Intent of this Illegal statement Is to

achieve y/2-1 varying y

By multiplying the two sides of the equality by 2 , it is seen to be equivalent to

achieve y-2 varying ,

which may be accomplished by the assignment

y: 2

Similarly, the original assignment

Y :- Y12

gives -ise to the goal

achieve y/2 - (y'/2)/2 varying ,

where y' represents the prior value of the variable y. Again, by multiplying both sides by
2 , we derive the assignment

:- y/2 •

Thus, we have obtained the program:

assert Oc(<d, e>O, e1 /2
N, zZO in

P,': begin comment traiformed dLismon program

B,: assert 05c(d, 00 I
(z,y) :- (0,2)

loop L,: assert dkzsc, c(d.(ziy), y-2V2M >
I suggest d'z.c, c(d.(z.,)
I untio YSI
I f d.(z+Y/2)sc then z : z.,/2 fi

I repeat
E.: assert Ic/d-zl<I

j I suggest kid-le
*en4.

1"-N .



GENERAL OVERVIEW 17

Since the expression y/2 appears thrice in the loop body, this program may be
slightly improved by evaluating the subexpression y/2 before the conditional statement.

We obtain:

assert 0c(d, 0, yel/ 2
N , xkO in

P": begin comment good dids Program I
I B.: assert Otc(d, c0 I
I (UY) :- (0, 2)

loop L,: assert d.z-c, c(td.(zxy), y-2V27)e
I ~Until yseI

I :,Y/2 I
I if d-(,Y)Sc then z :-z*Y ft

repeat I
ss: asert Ic/d-zj<, I

end.

Note that this program is almost the same as the original bad program. It differs In two
ways: the two loop-body assignments are Interchanged (this presumably was the error),
and is initialized to 2 rather than I (either initialization works).

4. Modifkation

*Consider the foUowing specifications,t L"" i

P,: begin. comment spar-root program

assert Sal, >o
achievew -zl(* varying z

j end.
I ,__ _ _ _ _ _ _ _ _

We would like to use the corrected real-divislon program as a basis for the construction of
the specified program for computing square-roots. We assume that the '-% operator is

not primitive.Bo
To this end, we first compare the specifications of the two programs. The output

specification of the division program Is

assert Ild-zI(t

while the output specification of the desired program Is

"a-hieve 144-ut( varying

.. ..lbl- - -.. .
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The obvious analogy between the two Is

cd ** ,/ ,

I.e. where one has c/d, the other has ,/a-. Thus, to obtain a square-root program from
the division program, we need to transform cid Into VA. One way to do this would be via
the transformations

(do,c or )

which take c/d into /Ii=ir. Here d is transformed into the identity element of the

division operator, leaving c to become A'd. Alternatively, we could apply the
transformation

(u/v * -/u, c P a)

where by u/v z* -'4 we mean that every occurrence of the division operator is replaced
by the square-root operator applied to what was the numerator.

We apply the first set of transformations to the division program P., annotated with

only those invariants essential for proving correctness. Replacing all occurrences of d

with I and all occurrences of c with ,V' and simplifying, yields

assert 0_94<i, e>O in
P,: begin comment square-root program

j B,: assert Ov-<Ri, )0

(z,y) :- (0,2)

loop L,: assert z<vr/-, Va-<z*y

I until yje

I y := y/2
if z~y:gva then z := z~y fi

I repeat

E.: assert I'-W(e
J end.I"

The transformed program Is guaranteed to satisfy the output specification Ivr-2IJ<e

unfortunately, It is Inexecutable inasmuch as it contains the nonprimitive function '- in
| o the conditional test.

it 18 assumed that knowledge about the subject domain is available. For example, we
need the following fact about the square-root function:

fact us/V" u2 5 when ukO

- =... k -.
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where u and v are universally quantified, I.e.

(Vu, V) (uZ0 D us-Fau2sv)

This fact allows us to replace the test x.S/ri with the equivalent (z~y) 2Sa. That x+y
is indeed nonnegative, as required for the two tests to be equivalent, follows from the loop
Invariant

L,: assert Aaz+y

and the

fact OSv/.

There remains an additional problem: a transformed program is only guaranteed to
satisfy the output specification for those Inputs that satisfy the transformed input
specification. Unfortunately, the transformed Input specification of our program,

9. ,assert OS/'(I, 0),

is contrary to the given input specification 0:i. To solve this, we can replace the code
preceding the loop with the goal

assert a~l, >0
achieve zSfa, .r/a<z y varying z,.

to Initialize the loop invariants z!;ra-and -Vi<zax prior to entering the loop. Achieving

z2 S Is equivalent to achieving z<vi". And since it is given that +5a, we need .only
achieve z2=z= I . To achieve the second conjunct 4'<z+y, given the

fact VuSu when ut I

we need only achieve z+y- I y=a. Thus we have reduced the goal to

achieve z-, i+y-a varying z,y,

giving rise to the assignment
(r,y) :- (I,a-I).

The square-root program that we have obtained Is:

IM

i.
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assert aL1, e>O in

P,: begin comment square-root program
B,: assert ai, e>O

S (z,y) :-- (i,a-i)j

loop L,: assert zri/, -/1<z+y
until y~e

i y := y12

I if (z+y)2<_a then z : zy ft
repeat

EI : assert I-I-zi<c
end .

Note that the global invariant O:Svr< i no longer holds.

The alternative set of transformations for transforming the division program into a

square-root program was

(u/v =) -, c * a)

Transformations that Involve specific functions such as u/v, are not, however,
guaranteed to yield a correct program, since the program may be based on some property

that holds for u/v but not for /'. These transformations are heuristic in nature; they
only suggest a possibly incomplete analogy between the two programs. Indeed, when
applied to the division program, the transformations yield

suggest O.a(d, >O in
P': begin comment transformed division program

B,': suggest OSa(d, e>O

(z,Y) := (0, 2)
loop L,': suggest d.zsa, a(d.(z.7)

until ,<, I

|0 1 if d.(z.y):Sa then z :z z.Y fi
repeat

E,': suggest 0-4I<t

end,

I i,

' .- l - ------ * = .. . -
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which clearly does not compute 44F. Since this set of transformations is not
correctness-preserving, the asserted Invariants have been replaced by suggested
candidates.

What must be done is to review the derivation of the program, expressed in the
purpose statements and see where the analogy breaksdown. The purpose of the division
program Is Ic/d-z<e which transforms into 14/1-z<e as desired. The programmer achieved
Ic/d-zl< by breaking it into the conjunction of three subgoals, given in the statement

purpose c/d2z, cld<z+y, ySe

that appeared in the original program. The last conjunct became the exit test, and the
other two became loop invariants. These subgoals transform into

purpose (E>_z, ,/ <z+Y, yge

which Indeed imply the transformed goal I.Va'-zJ<e.

The purpose of the loop body of the division program (though it was left out of P,

was

purpose c/dkz, c/dz+y, O<Y<YL,

'where YL, represents the value of the variable y when last at the head of the loop, at

label L,. In other words, the loop body reachieves the invariants while making progress

towards the exit test by decreasing y (to guarantee termination, that decrease cannot
be arbitrarily small). The loop-body subgoal of the transformed program, then, is

purpose vaz, A/ <z~y, O<y<yL,,.

The division program first decreases y and then introduces a conditional with the

purpose c/dzz, cld(z.y

It is here that the analogy breaks down. The loop body of the division program achieves
this purpose in two cases, by testing if d.(z+y)Sc or not. For example, if d.(z+y)_C does
not hold, then c/d<z+y, as desired. On the other hand, the fact that d.(z+y)Sa does not
hold In the square-root program tells nothing about 4:,/z4. We look, therefore, for a
transformation that will allow the implication

d.(zy)>a <

to hold. As for the previous alternative, since z.y Is nonnegative, the right hand side of

the Implication is equivalent to a((z.y) 2 . Matching the left-hand side of the implication

" %. •
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with this Inequality, tells us that the Implication would hold if we could transform

d.(z+y) a* (z.y)2 . Thus, where the division program has the function uv, the square-root

program requires v 2 . We complete the analogy by adding the transformation u-v .. v2

to obtain

(u/v -* 4u-, c .* a. u. v 2 )

Finally, as with the first set of transformations, the initialization subgoal does not hold,

and must be replaced by the assignment

The same program

assert a i, e>0 in

P,: begin comment square-root program

B,: assert akl, e>O
. (r,y) :=(l~a-I)I

loop L,: assert rSf/-, ra-(zy
J until y_<e

[ y := y/2

if (z+y) 2 -<a then z := z,, fi

I repeat

E,: assext Ir-zl<e

iend

Is obtained.

5. Absitraction

We now have two programs, P, for finding the quotient and P., for finding the

square-root. Both programs utilize the binary-search technique. We would like to extract

an abstract version of the two programs that captures the essence of the technique, but

that Is not specific to either problem. The resultant abstract program schema can then be

used as a model of binary search for the solution of future problems.

Consider the second analogy that we found between P, and P:

~~~(u/V "* Au, C *0 a, u-V * 2

i"N

I I . .. .. . I .... "' ' .. .... ... ............ . . . . .•
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Both u/v and ,/ii are functions; they may be generalized to some abstract function

f(u, v). Similarly the generalization of u-w and v2 is C(u, v). Since both c and a are
variables, we can leave them as is. This gives us the following set of transformations to
generalize the division program:

(u/v -0 f(u, V), u.v -0 g(u, v))

Applying these transformations to the specifications

achieve k/d-zlje varying x

of the division program yields

achieve If(,d)-zr<e varying x

This, then, shall be the abstract output specification of the schema. The division program

was

I1

P,: begin comment good division program

B,: assert Oc(d, )0

(zy) :- (0,2)

loop L,: assert d.z-c, c(d.(z',)

I until y<ge

I y :- y/2
if d.(z.y)Sc then z :- xy fi

I repeat
Ea assert kld-z<e

end.
I I

Substituting the abstract predicates f and C into their respective positions In the
annotated program, we derive the schema:

PI: begin comment traruformed division program

I Bt: assert OSc<d, 00

(z,Y) :- (0,2)
loop L,: assert g(d,r)Sc, c(g(d, z.+)

aseruntil y t ni

J if g(d, xy)Sc then x :a-z*y ti

J repeat

,b. J E,: assert V(c, d)-zl(#

J end.
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This schema is not necessarily correct for all instantlations of f and g , as the
original program relied upon facts specific to / and Indeed, there is nothing in this
abstract program to relate the function f that appears in the output specification with
the function g that appears in the loop Invariant. In general, transformations
(abstractions) of specific function or predicates are not correctness-preserving. We
would like then to determine under what conditions this abstract schema does achieve its
specifications.

As In the modification step, the initialization assignment does not necessarily achieve
the desired loop invariants. We therefore replace the initialization assignment with the
subgoal

achieve g(d,z)<c, c<g(d,z+y) varying z,y

leaveing unspecified how to initialize the two loop Invarlants.

y For the loop-body path to be correct, the truth of the invariant must imply that the
invariant will hold the next time around; this can easily be shown to be the case for any
function g. For the loop-exit path to be correct, we must have that the loop invariants
g(d, z)<c and c<g(d, z+y) plus the exit test y<e imply that the output Invariant

(((c, d)-zl<e holds. For this to be the case, it suffices to establish the condition

assert g(w, u)<v r uf(v, w) .

This assertion holds if g is the inverse of a monotonic function f, i.e. f(g(w. u), w)=u

and (u):-s(f(u, w)<f(v, w)), as, for example, • is the inverse of / and u2 is the inverse

of Au-.

in this manner, we have derived a general program schema for a binary search for the
value of f(c, d) within a tolerance e:

P,: begin comment binary-search schema

B,: assert g(w, u)5v n usf(v, w)

achieve g(z, d)Sc, eCg(z+y, d) varying x, I
loop L,: assert g(d, z)dc, c(g(d, z~y)

I untilyS#
I y :-y12 
I. if g(d,z+y)US then z := zy ti

repeat
E,: assert Lf(c, d)-zl<e

Its output specification is

" -4
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assert If(c, d)-45e,

and its precondition for guaranteed correctness Is

assert g(w,u)v a u<5f(Vw) .

Clearly, the function g which appears in the schema must be primitive; otherwise, it must
be replaced by something equivalent for the schema to yield an executable program. The
unachieved subgoal

achieve g(z, d).x, c<g(z.y, d) varying z,y

must also be reduced to primitives.

6. Instantiation

We Illustrate how the binary-search schema just derived may be applied to the
computation of Integer square-roots. Our goal is to construct a program that finds the
Integer square-root z of a nonnegative integer a:

I I

PA: begin comment integer sqar¢-rvt program

B,: assert aeN I

achieve =L,/aJ varying z
* end,

where the function LuJ yields the greatest Integer less than or equal to u.

We cannot directly match this goal with the output specification of the schema

assert V(c, d)-zl(e varying z

or with any of the other invariants known to hold upon termination of the schema.
However, If we expand the goal zLIT'I, using the definition of [uJ,

j fact u"LUJ n vsu,(vcAveZ

(where Z Is the set of all integers), we get the equivalent goal

, achieve zS/i, vra<z., zcZ varying z

I.e. z should be the largest Integer not greater than Ad. Since we know that the schema
achieves the two output Invarlants

assert xS!(c, d), f(c,dXze,

- i]
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we compare these invariants with the above goal. This suggests the transformation

(f(u, V) so v, C ,. . 1)

to achieve the two conjuncts z<S/i and 4i(z+1 ; in addition, we will have to extend the
program to ensure that the final value of z Is a nonnegative integer. For this purpose, we

append the subgoal

achieve zeZ protecting zS/i, 4/i(zOl varying z

to the end of the Instantiated schema. The protecting clause means that the relations

z:S/i" and 4l<z+I , achieved by the loop, may not be clobbered when achieving the

additional goal zeZ.

The precondition for the schema's correctness is

assert g(w, u):;v a tgf(v, w)

instantlating it yields

assert g(w,u)_v w r; .

Recalling that

fact u-/v a u2<V when utO

this condition may be satisfied by taking g(w, u) to be u2 , provided that the argument

u is never negative. This completes the analogy, obtaining the transformations

(f(u, v) . /i, c -$ a, C 1. g(, u) suo) .

Applying this Instantiation to the schema, we obtain the partially written program:

Ps: begin comment integer square-root program

B,: assert aeIJ

achieve zS/Q, ra(x+y varying z,I

loop L.,: assert zrS4, va<z yI

until ys
, t y :- y/2

if (?+y)2<4 then z := z+y fi

repeat

assert z<S/, 4a/<zi

, ,J achieve zeZ protecting z54, a<,z+ I varying z

S en4 t .
I __ _ _ _ _ __ _ _ _ _ __ _ _ _ _1" .. That the argument z., is nonnegative follows from the invariant /iTz ..

-------------------- ----------------------
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7. SuthsU

This program still contains two unschleved subgoals:

achieve g ;/jT, 4ai-(z~y varyiag ,y

and

achieve zeZ protecting zS', 4(z+1 varying x

We show now how these subgoals may be achieved.

The first subgoal is a conjunction of two relations, r-faf and 4,ai(z+, which are to

be achieved simultaneously. it may be split Into the two consecutive subgoals

purpose zsq/i, a(zy
achieve zS/i" varying z
achieve 44(zy varying y

assert z<fa-, ra(xay

The first sets the variable z to some value satisfying zS-/la; the second leaves r
constant so that z<943- remains true, and sets y to some value satisfying -/a(z.y. We
can solve the first by setting

z :a 0 ;

I'I
!.

1 !
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since z remains 0 while achieving the next subgoal -r4/(zy that subgoal becomes

achieve V,/y< varying y

We shall return to this subgoal later. Of course, there is no assurance, as yet, that this
split will lead to a satisfactory solution; were it not to work out in the end, then we would
have to retrace our steps to this point and try something else.

There are two ways In which we might achieve the other remaining subgoal

achieve zEZ protecting zS; ", %/i(z+l varying z

One Is to take the current value of z which satisfies the two conditions z~g-/a and

V/a<z+l and perturb it just enough to make it an Integer while preserving those two
protected relations. This can be done by assigning

z :- [zJ

Alternatively, we note that the above subgoal is equivalent to

achieve zEN protecting z,/54, v'/i(zi varying z

since zeZ and -/i'(z+ imply that z is nonnegative. To achieve this, we set up the new
goal

achieve ZEN in P,

by which we mean that ZEN is to be a global invariant of P, . Accordingly, we must

establish ZEN Initially and then preserve it throughout the loop computation. Initially

zaOeN, as Is desired. Since z is sometimes Incremented by y , the latter should also be
a nonnegative Integer. That gives us a new goal

achieve yew in P, .

Finally, in order to preserve the Invariant yeN , while It is repeatedly halved until It Is

no longer greater than I , It Is necessary and sufficient that ye2N be invariant. Thus, we
have the stronger goal

achieve Ye2w in P .
I. I

For Ye2N to hold throughout, we need to ensure that It holds upon entering the loop.

Accordingly, we add the conjunct ye2w to the Initialization subgoal -/V<y.

We are left with the unachieved subgoal

achieve vi40. va 2N varying 7
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The first conjunct might be achieved by letting ,-a+I, while the second could easily be
achieved by letting ya I. However, though each conjunct is achievable by itself in this
manner, achieving both together is more difficult, since in general these two solutions
conflict with each other. So, Instead, we transform this conjunctive goal into an iterative

loop, choosing first to achieve ya~t , and then to keep it true while executing the loop
until the remaining conjunct, 41*(y, is also satisfied. Since ,/ is not a primitive function.

we must test for the equivalent a* :

purpose -/a(y, yE2 N

achieve ye 2 lH varying y

loop L.: assert ye21

until a<?

approach a(y2 protecting ye2 4
repeat

assert /.ra(, Yc2 14

To initialize Y21 , we let Y-20 and assign

y:= I.

Within the loop, we have the subgoal

approach a(y2 protecting ye2N

i.e. we wish to preserve the Invariant ye 2N while making progress towards the exit test

a(Y 2 . Since we know that initially ya I , and ultimately we want O;a<(y, It follows that
y is increasing. Assuming that y is to increase monotonically, we get the loop-body

subgoal

achieve y)y,, protecting ye2 N

where yL Is the value of y when control was last at L, . it follows that y must be

multiplied by some positive power of 2, e.g.

y 12.

1b!
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We have obtained the following program:

assert aeN, zeN. Ye2N in
P,: begin comment integer square-root program

B,: assert a -"

purpose z<,/, 'z I
I z := O ISy:=

loop L.: assert YON

until 
I( 

2

y := 2.y

repeat

loop L,: assert zsvrta, 4a-(zy

until YS I

y :- y12

if (z.y)2ga then z := z+y fti

repeat

E,: assert zg', a/1<z+l, zWN

end .

This program can be Improved as will be Illustrated In the chapter on synthesis.

I.

AI
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PROGRI MODIFICATION AND DEBUGGING
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1. INRODUCTION

Program modification has as its goal the transformation of a given program Into a new
program to achieve a different goal. We have already seen how a program that divides is

modified to compute square-roots. The essence of our approach is to find an analogy
between the specifications of the given program and those of the program that we desire
to construct. This analogy is then used as the basis for transforming the existing program
to meet the new specifications. Invariant assertions play an important role in this process.
Program debugging is considered as a special case of modification: if a program computes
wrong results, It must be modified to achieve the intended results.

The use of analogy in problem solving in general, and theorem proving in particular, is
discussed by Kilng [1971]. Other works employing analogy are Brown [1976] and Chen
and Findler [1976]. The modification of an already existing program to solve a somewhat
different task was suggested by Manna and Waldinger [1976] as part of a
program-synthesis system. Also, the STRIPS (Fikes, Hart and Nilsson [1972]) and HACKER
(Sussman [1975]) systems were to some extent capable of generalizing and reusing the
robot plans they generated. Recently, Ulrich and Moll [1977] have been investigating the
role of analogy in program synthesis. Katz and Manna [Apr. 1975] and Sagiv [1976]
discuss debugging techniques based on Invariant assertions; Boyer, Elapas, and Levitt

[1976] and King [1976] describe debugging aids based on the symbolic execution of a
program.

The next section elucidates the basic aspects of our approach to program
modification with the aid of several relatively straightforward examples. More subtle
facets of the techniques are Illustrated in the examples of Section 3. The correctness of
the technique Is discussed In an appendix.

2. OVERVIEW

For program modification, one is given a known correct program with its input-output
specification and the* specification for a desired new program; comparison of the two

I. o specifications suggests a transformation that is then applied to the given program. Even if

the transformed program does not exactly fulfill the specifications, it can serve as the
basis for constructing the desired new program.

= ... .....
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I. Basic Technique: Global Transformation

We distinguish between two types of objects, constants and variables: a constant is any
symbol appearing In a program with assumed properties, e.g. 0, true, + , and a ; a
variable is any symbol appearing in the program with no assumed properties other than
those mentioned In the input specification. A variable that changes value during program
execution Is termed a program variable; any other variable is considered to be an Input
variable. A program variable appearing in the output specification is called an output
variable.

In the examples of program modification presented here, we stress transformations in
which all occurrences of a particular symbol throughout a program are affected. Such
transformations are termed "global", in contrast with "local" transformations that are
applied only to a particular segment of a program.

f. .As a simple example, consider the following annotated program (due to R.W. Floyd):
r

P,: begin comment array-mlnimum Program

assert n?O
y :- n

J loop assert min(Ay:2-y])-min(A[n:2.n]) , OsySn
I until y-O

i A[2,-l]A[27 ] then A[y-1] :- A[2.y-l]
I elsa A[y-I] :- A[2.y]

J ti
I , :u-l I-
I repeat

assert A[0]-mn(A[n:2.n]) J

I end. I I
The symbol n appearing In the program Is an input variable, A Is an output variable, and
. Is a program variable; the symbols 0, min, 5 , etc. are constants.

Given an array segment A[n:2.n] that Is nonempty (I.e. n is nonnegative), when this
program terminates, A[O] will contain the minimum of the values of the n.I array
elements A[n], A[nIJ,..., A[2n]. This output specification is formally expressed in
the final statement

, . aert A[0]-mfn(A[n:E-n]).

r That the program satisfies this specification may be proved using the loop invarint

assert n~dnlA[y:2-]).in(A[x.'2x]1 "x .
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(This Invariant holds Initially when y=n, is maintained true by the loop body, and, together
with the exit test y-O , implies the output specification, since mi7(A[O:2.0])-A[O].

To modify this program to compute the maximum of the array, rather than the minimum,
we compare the specification of the given program P,,

assert A[O]=min(A[n:2.n]) ,

with the output specification of the desired program Pt,

achieve A[O]=max(A[n:2.n]) varying A[O:n-i]

We say that we are looking for an analogy

A[O ]min(A[n:2.n]) * A[O]=max(A[n:2.n])

The obvious analogy between the two specifications is that one has the function min
where the other has max , i.e.

Smain ** max

This analogy suggests that by replacing all occurrences of min in the first program,
we may obtain the desired max program. But the transformation min = max alone will
not work. The reason Is that certain properties of the constant main were used in the

construction of the program, and those properties do not hold for the new function max.
Later on, we shall see how this problem Is dealt with.

In the meantime, there is another way to effect the transformation

A[O]=min(A[n:2.n]) -* A[O]=max(A[n:2.n])

We first eliminate the function max(A) by replacing it with the equivalent -min(-A),

where -A is equal to the array A with each element negated. it remains to transform

A[O]=mn(A[n:2.n]) , A[O]-mhn(-A[n:2.n])

Since we do not want to transform the constant min , we would like the right-hand sides

of both equalities to begin with min. Multiplying both sides of A[O],-min(-A[n:2.n]) by
-I , we are left with

A[O ]min(A[n:2.,n]) .o -A[O]-mn(-A[s:2.n])

Now the transformatio.

A m -A

applied to the output specification of the given program, yields
,b.

'-!
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assert -A[0]-min(-An:2.2])

which Is equivalent to the desired

achieve A[O]=max(A[n:2-n]) varying A[0:- i]

Since A .s -A is a transformation of the array variable A, and variables have no
assumed properties, we can obtain a program guaranteed to satisfy the transformed
specifications by applying this transformation to the program. (By applying the same
transformation to all occurrences of A In the verification proof of the original program, a
correctness proof for the transformed program Is obtained.)

The variable A appears within the program text only in the conditional statement

if A[2'y-I]A[2.y] then A4-I] :-A[2.y-I]

else A[b-i] :: A[2,y]
fi

Applying the transformation A -* -A to this statement yields

if -A[2,y-I]<-A[2'y] then -Afy-l] :- -A[2,y-1]
else -A[-J :-- -A[2"yJ
fi

The test -A[2.y-I]<-A[2.y] is equivalent to A[2.y-I]>A[2.y]. But the transformed
assignment statements are "illegal", since a function, in this case -A , may not appear on
the left-hand side of an assignment. The Intent of the illegal statement,

however, is for the new value of the expression -Aly-iJ to be made equal to the old
value of -A[2.y-l] by changing the value of the array A. In other words, we wish to
achieve the relation given by the goal

achieve -A[Y-I]=-A'[2-y-I ] varying A[O:n-I]

where A denotes the value of the array A before this achieve statement. To obtain an
assignment to A , we must Isolate the variable A on one side of the equality. We

- therefore multiply both sides of the equality by -I , obtaining the goal

achieve Ay-I]-A'[2.y-l] varying A[O:n-1]

Since the variable A appears on only one side of the equality, and 05-15n by virtue of
,.b

III .. III .. .- - S
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the Invariant OSy~n and the exit test y=0, we may achieve the desired relation between

the new vplue of A and the old by assigning to A the value of the expression on the
other side of the equality:

Ab-1] :- A[2.yl-.

Similarly, the transformed assignment

-A[y-I] :--A[2-y]

becomes

Afy-1] :-A[2.y].

Global tranformations are applied to the invariants annotating the program as well as
to the code. Thus the loop invariant

assert min(A[y:2.y])=min(A[n:2.n]), O<<n

becomes

assert min(-Afy:2.y])=min(-A[n:2.n]) , 0:y<n

or equivalently

assert max(A[y:2.y])"max(A[n:2.n]) , 0:5)Sn

We have derived the following program to compute the maximum:

P,: begin comment array-maximum program
y := n

loop assert max(AEy:2.y])=max(A[n:2.n]), Os<n
until y=O

If A[2.,-I]>A[2.y] then Afy-l] :- A[2.y-I]

else [ -y-iJ A[2.y]
fi

y :- Y- I

repeat

assert A[O].max(A[n:2.n])
end .

Note that the array -A no longer appears In the program; only the original A is actually
used.

.b

As we have seen, global transformations are applied to all the Invariants as well as to
the code. in particular, a transformation that affects an input or output variable changes

1b" *~ -- 1
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the output invariant correspondingly. Thus, for program modification, one looks for a
transformation of input and/or output variables appearing in the output invariants that will
produce invariants implying the desired output specification.

2. Special Cast: Program Debugging

We consider the debugging process as an important special case of program
modification: a program that computes wrong results must be modified to compute the
desired (correct) results. If we know what the "bad" program actually does, then we may
compare that with the specifications of what it should do, and modify (debug) the incorrect
program accordingly.

As an example, consider a program Intended to compute the integer square-root z of
the nonnegative Intger c ; that is, c should lie between the squares of the integers z
and z. I . The goal, then, is to achieve the relation

achieve z2SC, c<(z.1)2, z,

where H is the set of nonnegative integers, and the given program is

I I
P,: begin comment integer squart-root program

(z,s,t) :, (1,0,3)
loop until cs

S(z,s,t) :- (z.1,s.t,t.2)j

i repeat
I en. .

Using the methods described in the chapter on annotation, invariants may be
generated that express what relations this program achieves. It turns out that the global
Invariants

assert &-2.z+l, s-z 2 -l, zEiN ,

where N I is the set of positive Integers, hold throughout the program. Furthermore the
loop invariant

I* assert c?>-t

holds whenever control Is at the head of the loop. Upon termination, the global Invariants,
the loop Invariant, and the exit test all hold:

,b.

assert t-2*z*i, s-z2-1, zaNI, cbs-t, c(s

. . mi
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It follows that the given program halts with the relations

assert (z-I) 2 gScI, c+1<z 2 , zHn4l

holding between the variables, rather than with the desired goal

achieve z2 sc, c((z.l)2 , zeN.

The cause of the bug was the Inadvertent exchange of the initial values of z and s

Comparing the desired goal with the actual invariants, we note that the former may be
obtained from the latter by replacing z with z+I and c with c-I. Applying the
transformation c - c-I to the program statements affects only the exit test c(s , which
becomes c-I<s , or equivalently cs. The transformation z =* 2+ affects two other
statements: the Initialization z:=J becomes z~l:=l and the loop-body assignment z:=z~l
becomes z.l:=z+2. These resultant assignments, however, are "illegal", inasmuch as an
expression such as z+ I may not appear on the left-hand side of an assignment. Instead,
the expression z+ is given the initial value I by assigning z:-O, and the value of the
expression z+ I is incremented to z 2 by the "legal" assignment z:=z+I .

We have thus obtained the corrected program:

P,': begin comment debugged integer iquare-root program
(z,st) := (0, 0, 3)
loop assert c?-t

until c€s

(z,s,t) :a (z.I.sjt,f42)
repeat

assert z2 C, c<(z1) 2 , zeN

end .

Katz and Manna [1976] suggest that when there Is insufficient Information to prove
either the correctness or Incorrectness of a program, It may nevertheless be desirable to
"debug" the program. The possibly Incorrect program may be transformed, using known
Invariants, into a new program which s unquestionably correct. Even when invariants are

|* found for an Incorrect program - it is often more difficult to discover invariants for an
Incorrect program since it may in fact not compute anything meaningful - there may be no
way to transform them into the desired specification. it then becomes necessary to
consider the sources in the code of different invariants separately.

1
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3. Corrtness Comidfrationj

In the above examples, the transformed programs were correct; i.e. by the nature of

the transformations, the transformed programs do in fact satisfy the transformed

specifications. As we noted, this Is not necessarily the case with any transformation.

Suppose, for example, that we are given the program:

P,: begin comment array-minimum program

(y, z) := (0, A[0])
loop assert z-min(A[0:y])

until y=n

y :=y+1
z :=min(z,Afy])

repeat
assert z=min(A[O:n])

end
,t I

for finding the minimum of the array A[O:n], and we wish to construct a program to find

the maximum of the nonempty array A[l:n]. The given program achieves the output

relation

assert z=min(A[O:n])

while the output specification of the desired program is

achieve z=max(A[I:n])

Thus, the transformations min 4 mar and 0 ,* I suggest themselves. Though in this

case applying these transformations happens to yield a correct program, such

transformations of constant symbols do not necessarily preserve correctness. Were the

function min not explicitly used in the program, e.g. in the program

P': begin comment alternatlve array-minimum program

(y, z) :- (0, A(0])

loop assert z-mLn(A[O:y])
until y=n

I ,7:=y l I
if A[y]<z then z := A[y] fi

repeat
assert z=min(A[0:n])
end,
ensI

1 ~ then the proposed transformation min a* mar would clearly not work.

S%-
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Global transformations, where an input variable is systematically replaced by a
function of only input variables, or an output variable by a function of output variables or
of both input and output variables (as in the previous examples), always yield a program
satisfying the transformed specifications. However, transformations of constant symbols
(as in this last example) are not guaranteed to result in a program satisfying the
specifications. Details regarding correctness-preserving transformations may be found in
an appendix.

Hence, for some transformations, correctness must be verified. For this purpose,
invariant assertions are utilized. As we saw above, invariants are essential in our
approach to debugging too, as It is necessary to have some idea of what the program
actually does before It can be corrected.

Global transformations are applied to all invariants, as well as to the code. Using
these transformed invariants, verification conditions for the new program may be
generated; If they hold, then the new program is correct. Alternatively, applying the
transformations to the (unsimpilfied) verification conditions of the original program yields
verification conditions for the transformed program. It is best if the conditions are given in
the form of a subgoal tree, reflecting the logical steps taken in constructing the program.
This subgoal structure may be expressed in purpose statements.

Returning to the above example, we wish to modify the first version of the min

program P,. to obtain a program that achieves z=max(A[I:n]). Applying the

transformations min = max and 0 . I yields

P,: begin comment array-maximum program

(y,z) := (1,A[I])
loop assert z-max(A[i:y])

until y=n

z max(z, AD])
repeat

assert z-max(A[I:n])

end.

Using the new invariants, the correctness of this max program may straightforwardly be
shown.

On the other hand, applying these transformations to the alternative min program
P4 would yield

1K
- -- . -
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I I

I P;: begin comment suggested 6rray-mXimum program
( . z) := (0, A[o]) I
loop suggest z=max(A[O'y]) I

I until Y-n
I y:-y i
I if Afy]<z then z :-Ay] n I

repeat
suggest z-max(A[O:n])

end. II __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

We have replaced the assertions with suggestions, since correctness is not guaranteed
by transformations that involve constants (in our case min ). Indeed this program is
Incorrect, since the loop body does not preserve the candidate loop invariant

suggest z-max(A[O:y])

In the next subsection, we discuss what can be done In such cases.

4. Completing an Analogy

As discussed above, the verification conditions will not always hold for a given set of
transformations. There could, for example, be unrelated occurrences of 0 in the rmin

program P' (in which case the global transformation 0 up I would be inappropriate) or

the function symbol mLn might not appear explicitly in the program at all (and therefore
the transformation min s max would be ineffectual).

The program

P4 ': begin comment alternative array-minimum program

(y, z) :. (0, A[0])
loop assert z-mln(A[0.y])

I until y-n
I ,:- Y+ I

if A[y](z then z:. Afy] i
I J repeat

assert xamin(A[0:n])
l J end
1_ _ _ _____

i"N

------------------------
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has several verification conditions. One of them corresponds to the loop-body path when
the conditional test is true; It may be represented as

assert R n

assert A[y]<z

z := A[y]

Since the program Is correct, we know that the loop Invariant holds each time control is at
the head of the path, and that if that path Is taken, then the invariant holds at the end of

the path as well. So, assuming that the invariant z-min(A[O:.y]) holds and that the exit

test y=n Is false, then after Incrementing y and setting z to 4,1] when the conditional
test A~y]<z Is true, the Invariant z=min(A[O:y]) again holds, for the new values of y and

z. In other words, we have

z=min(A[O:,]) A yon A A[.l](z P A[y.l]=min(A[O:-yl])

Applying the two transformations, 0 * I and min so max , to this condition we obtain

z=max(A[l:,]) A yon A A[( i]<z :s A[y+l]=max(A[l:.l])

However, the condition no longer holds, and we must try to find a way to correct that. The

condition is equivalent to

z=max(A[i:y]) A yon A Ay.+]<z a A()11]=max(max(A[l:y]),A[yi])

which, in turn, simplifies to

A[y+l]<z :) A[y l]=max(zA[y+l]),

or

Afy~]<z Afy~l]kz

Now, matching the two sides of this Implication, suggests completing the analogy with the

additional transformation ( * Z.

This transformation In fact makes all the verification conditions valid and yields a
correct program for finding the maximum:

I.

,iN
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I I

Ps": begin comment atherunt a.rray-maximum progr.am*I ( ,,) :- (l,A~I]) IJ
loop assert z-max(A[:7y])

I .Until Y.

I If Afy]kz then z :- A[] i -

repeat
assert z,,max(A[I:n]) "

end .

Note that the additional transformation could be localized to the conditional statement.
since its verification conditions are the only ones that fall.

Were 0 not to appear explicitly in the initialization, say if we had Instead

y:= I-I

z :- A[y]

then the verification condition for this path - after applying the transformation

(0 = 1, min -* max) - would be

A[ -I]=max(A[I: I-I]) ,

which does not hold. It may then be necessary to write a new program segment that would

Initialize the loop invariant zmax(A[ I.:y]) by setting y and Y to appropriate values. The

goal

achieve zzmax(A[l:y]) varying y, z

can be satisfied by the assignment

(y,z) :- (IA[l]) .

Were 0 to appear In unrelated parts of the program - say for the purpose of
illustration that we had an additional loop-body assignment y:-+0 - then the

transformation 0 -* I would result In an Incorrect program. in such cases, analysis of the

(loop-body) verification conditions would suggest not applying that transformation to that

0 -occurrence of 0.

Another problem that sometimes arises in program modification Is that the

transformations only achieve part of the output specification. In such cases, it may be

possible to extend the program to achieve all the desired parts by achieving the missing

parts at the onset and maintaining them invariantly true until program termination.
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Alternatively, we could append new code to the end of the program that will achieve the

additional parts - without "clobbering" what has already been achieved by the program.

For example, consider the case where it is desired that P," also find the position x,

in the array, of the minimum element z. We can extend the program to

achieve z-A[x] in P," varying x

by maintaining that relation as an invariant throughout the execution of the program.

Synthesis and extension are treated in a separate chapter.

3. EXAMPLES

In this section, we present two examples of program modification. We begin with an
incorrect real-division program and show how to correct it. This is the same program as

appeared in the overview chapter; here we go Into greater detail. Then we modify a
square-root program to search a sorted array for a particular element.

Example 1: Bad Real Division to Good Real Division.

Consider the problem of computing the quotient z of two nonnegative real numbers c
and d, where c(d , within a specified tolerance s, O(e. The given program is:

P.: begin comment bad real-divtisa program

assert O:c(d, 0<
Z Y :- (0, 1)

loop suggest zScld, c/d(z I
I until ye

if d.(z.y):c then z :w z., fi

I~ :- y/2I
' i repeat

suggest z.c/d, ld(z~e

•J en .

1?I
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The initial assertion

assert 05_c<d, 0<

contains the input specification that the Input variables c, d and e are assumed to
satisfy. The statement

suggest zsc/d, cld<z+e

at the end of the program expresses the output specification of the program which the
program Is believed to achieve. But, for example, c-J, d-3, and e-1/3, which satisfy
the Input specification, yield z=0 which does not satisfy the second conjunct c/d<z.e of
the output specification.

Before we can debug this program, we must know more about what It actually does.
For this purpose, we first annotate the program with loop and output invariants. The

annotated program - with Invariants that correctly express what the program does - is:

assert Oac(d, 04e
(z,,) :s (0, I)
loop assert d-z c, c(d'(z.2.y)

until yge

if d.(z.,)Sc thea z :* zy fi
:- y12

repeat
assert d-zSc, c<d-(z.2-,)

The desired relation c/d<z4e Is not Implied by the output Invariants.

We now have the task of finding a transformation (correction) that transforms the

actual output invariant

asert d-zsc, c<d.(z+2.e)

into the desired goal

suggest rScId, c/d(zi,

or equivalently,

suggest d.zSc, c<d.(z+e)
I.

T N "o% . .r. - ' - .. .,• • .
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The transformation will then be applied to the program. Accordingly, we would like to

modify the program In such a manner as to transform the Insufficiently strong c(d.(z42.e)
into the desired c(d.(z~e) and at the same time preserve the correctness of the other
conjunct of the specification:

(c<d.(z.2,e) . c(d.(z*e), d.zSc * d-zSc)

The expressions c(d.(z+2.e) and c(d.(z+e) differ in that the former has 2-. where

the latter has just e. So If we can transform 2. -* e , then we will have transformed the

specifications as desired. In order to transform the expression 2.o into r, we can
transform the input variable e into /2 We, therefore, apply the transformation

e z* e/2

to all occurrences of f in the program; all other symbols in the program are left
unchanged. Only one executable statement - the exit clause - Is affected, giving

Correction 1: Replace the exit clause with
until ,ye/2

The resulting program Is:

*P,': begin comment corrected rel-division program

assert O_<c<d, O<e/2

(ZY) := (0, I) I
loop assert d'zSc, c(d'(z+2"y)

I until y e2 i
if d.(z,)Sc then z :- z. fi

I Y :-12 I
I repeat I

assert d.z:c, c<d.(z+2./2).

!.

1%...
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Had we matched the output invarlants

assert d.zsc, c(d.(z+2.€)

with the original output specification

suggest ruld, c/d<z*e

then the transformations

(d ,, 1, c ,* c/d,e e *e/2)

would suggest themselves. Here d is transformed 'into the identity element of

multiplication, so that d-z =* z. This set of transformations leads to the same program,
except for the fact that the conditional test is transformed into z~y5c/d which contains
the nonprimitive division operator. Since d is positive, this nonprimitive test is equivalent

to the primitive test d.(z+y)_c , which may be substituted for it.

Two additional debugging transformations may be obtained. Again we begin by

comparing c<d.(z2.e) with c<d.(z+e) , but this time we try to leave e unchanged. We

therefore try to Isolate e on the right of both Inequalities. Accordingly, we wish to

transform

(c/d-z)12<e = cld-z<e

Matching the two sides of the inequalities leaves us with (c/d-z)/2 =* cld-z . Multiplying

both by 2 , we get

c/d-z *z 2.(cld-z) = 2.c/d-2.z = cl(dl2)-2.z

This leads to the transformations

(c * 2.c, z ; 2.z)

or

(d, . d/2, z -* 2.z)

Applying these transformations to the second conjunct d-zSc gives either d.2.z-<2.c or

d/2.2.zsc, both of which simplify to d'zSc. This is exactly what was wanted and no
further transformations are necessary.

Doubling z and either doubling c or halving d In the conditional test d.(z+y)Sc

yields a test equivalent to d.(z+/y2)Sc. Transforming z Into 2.z affects two additional

statements: the Initialization z:xO becomes the "illegal" assignment 2.z:=O, which is
equivalent to the "legal"

z := 0.

Similarly, the assignment z:uz+y of the then-branch becomes 2oz:=2oz y ; in order to

-.h
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achieve 2.z-2-z'., varying z

we can assign

z :- z+Y12

No other statements are affected by either of the two modifications; thus they both yield:

Correction 2: Replace the conditional statment with
if d.(z+yl2):c the z :-z+y12 fi

In general: in order to transform f(u).* v, for any expressions u and v and

function f , we may transform u ,*f'(v) , where f- is the inverse of f . When applying
a transformation y ,* f(y) to an assignment :.g(.) , we get an Illegal assignment

f(y) :: gl([y)) .

To
achieve f(y)=g(f(y')) varying y

we can apply the Inverse function f- to both sides, suggesting the assignment

Y /g(f( )))

Each of these possible sets of transformations involved one of the input variables e,
c, or d. One must, however, be careful when transforming input variables, since the

transformation should be 4pplied to the Input assertion as well, possibly changing the
range of legal Inputs thereby. In our case, the transformations we have performed pose no
problem: Applying e ,* e/2 to the input assertion

assert Oc(<d, 0<e

yields the equivalent assertion

assert O<c(d, O(e/2

Therefore, halving e has no effect on the input range, and the transformed program Is
correct for any Inputs satisfying the given specification. Moreover, since in fact the
condition c<2.d, rather than c(d, Is strong enough to imply that the loop invariants
d.zSc and c<d.(z+2-y) hold after the Initialization assignment (z,y):=(O, I), (this is easily

seen by substituting 0 and I for z and y, respectively, In the invariants), we can relax
the input assertion of P6 to

assert Oc<2.d, 0<

1*1..
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Then, replacing the c In c<2.d by 2-c (or the d by d/2 ) atill yields a program correct for
Inputs satisfying c<d , as is desired.

Our program after Correction 2, annotated with appropriately modified invariants is (all
c have been replaced by 2.c and all z by 2"z and the resultant expressions have been
simplified):

I

P6": begin comment good real-division program

assert Oc<d, 0(e

(zy) := (0, 1)
loop assert d-z<c, c(d.(zry)

I until y<e

I If d.(z+y/2)<c then z :=z y/2 fi'
i ,.y := Y.,/2

I repeat

assert d'z<c, c(d.(zxe)
end.

Example 2: Real Square-root to Array Search.

In this example, we show how the square-root program

rI
P,: begin comment square-root program

assert aal, e)0 i
S (z,y) := (Ma-1)

loop assert z<s/iT, ./i<z+y I
I aUntil Y< i
I j,: nI

II f (z+y)2:a then z :. z+, ti
I repeat I

assert zrsd;, A15<:z. 1
" I,,end I

1,2
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may be modified to obtain a program that searches for the position z of an element b
known to occur in an array segment A[I:n]. The array is assumed to contain nonnegative
integers sorted in nondescending order. This example will illustrate a number of difficulties

that may be encountered.

Our goal is

P.: begin comment array-search program

assert u<-vuA[uJ:A[v], A[u]N, bcbag(A[i:n])

achieve A[z]Jb varying z I
end, I

where N Is the set of nonnegative integers and bag(A[i:n]) denotes the multiset (bag)

of elements in the array segment A[i:n]. We shall allow Indexing of an array by any real
number, and adopt the convention that the intended element may be found by truncating

w the index, i.e.

fact A[u]=A[LuJ]

(in a similar manner, we could develop a program following the Algol-60 convention of
rounding-off the Index.)

The desired goal

achieve A[z]=b varying z

is not directly comparable with the output Invarlants of the given program

assert z< fa, ./'(z+e .

So we first develop the goal somewhat.

As a first try, we replace the desired goal with the equivalent conjunctive goal

achieve A[z].b, bSA[z] varying z,

guided by the fact that we wish to achieve an equality, while the given program achieves

an Inequality. Since we are dealing with Integers, this Is the same as

achieve A[z]Jb, b<A[z]+l varying z

|. Accordingly, we are looking for a transformation

z:-vrAVai(z+e no A[z]*Ab<A[z] . .

• and try to compare the conjunct z54T with A[z]b. (Since A Is commutative, we could

?1
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just as well begin by trying to compare zSi with b(A(z)+J .) Matching the two sides of

the Inequality, we get (z a* A[z], vi-us b) ; In order to obtain 45,o b , we can let a 00 b2 .

Applying these transformations to the remaining conjunct 4'<z+e leaves us with

b(A[z]+e -o b(A[z] I ; this suggests the additional transformation e * I

Applying the three transformations

(z =, A[z], a * b2 , e . i)

to the given square-root program yields
I I

P,: begin comment proposed array-search program

assert b2 2!, 1>0 

J (A[z],y) :(,b 2 -1) i
w. ] loop assert A[z]<b, b<A[z].y I

• J until y-I I
I ,:= 2 I
I if (A[z].y) 2 <b2 then A[] :A []A:y I
I repeat

* , l assert A[z]<b, b<A[zJ.1 I
end. I

There are, however, a number of problems with this program, the insurmountable one lying
In the conditional-branch assignment A[z]:=A[z] y. The problem is that the original goal
stated that only z is an output variable, while the array A Is an input variable which may
not be modified by an assignment. Furthermore, there Is no way to

achieve A[z]JA[z'] y varying z

since the value A[z']iy Is not known to appear In A at all.

So we must look for another alternative. Since A[u]=A[LuJ] , it is sufficient to

achieve A[LzJ]-b varying z

In order to achieve our goal

achieve A[z]-b varying z

At this point, we would like to extract z from within the expression A[LrJ], as it appears



by Itself In the output Invariants of the given program. To this end, we use the function

pos(A, ,u) which gives the position of the (rightmost) occurrence of the element u in the

array A ; it is an inverse of the array indexing function A[] , i.e.

fact pos(A, )iZ when uaA

( Z is the set of all Integers),

fact A[pos(A, u)]=u when ucA

and

fact pos(A,u)>v-I when A[v]-u.

Instantiating the second fact with b for u yields A[pos(A, b)]ub, since it is given that

bA ; thus, in order to

achieve A[LzJ]=b varying z

it suffices to

achieve pos(A, b)-LrJ varying z

Applying now the definition of LuJ,

fact vzLuJ a v:uAsuv+iAveZ
we obtain the conjunctive goal

achieve pos(A, b)Sz, z(po(A, b) i, Ps(A, b)eZ varying z

Since the third conjunct poe(A, b)eZ is always true, we are left with the goal

achieve pos(A, b)Sz, z(pos(A, b).I varying z .

The current goal is still not readily comparable with the output specification of the real

square-root program,

assert z<,/-. 4/-(z ,

while for the array-search program the output variable x appears on the right-hand side

of the S relation and on the left-hand side of the ( relation, for the square-root program

the sides are reversed.

* | *One possible solution is to transform the predicates S and (. To get

zsIi so zapo(A, b)

we may apply the transformations

(5so , *14 me .p (A, M)

I* I .. .. . . .. ,
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To obtain the second transformation 4,* pos(A. b), we let a * ps(A.b)2 . Applying
these transformations to the conjunct 4(z.t leaves

poj(AbXze - pos(A,b)+1 z .

Transposing to get just pos(A, b) on the left of the inequalities, gives

pos(A,b)<z~e . pos(A,b)>z-I

so we add the transformations (< >,€ - -I). All together we have
I ~(< :5~ a, poi(A, b)2, , ,e % e -).

Applying these transformations to the given square-root program yields

(zy) := (I,pos(A,b)2 -i)
loop suggest zzpos(A,b), pos(A,b)>z.y

until Y?;-l
Y, :- .Y12

if (z+y)2>pos(A,b)2 then 2 :-+zy. fi
repeat

suggest zkpos(A,b), Pos(Ab)>z-l

Simplifying the expressions in the program, we get

(z,.y) :- (i,pos(Ab)2-)
loop suggest zpo$(A, b), Pos(A, b)>z.y

until Yk-I
y :- y/2
if )+ypos(A,b) then z :- z4y fi
repeat

suggest zkpos(A,b), Pos(A,b))z-I

Before we try to eliminate the nonprimitive function pos from the transformed
program, we attempt to verify the correctness of the program as is. The loop invariants

assert zzpoe(A, b), pos(A, b)>z.y

along with the exit condition

until Yk-I

clearly imply the desired output invariant

assert pos(Ab)9z, z<pw(A,b).l

iN!
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Furthermore, the loop-body path preserves the loop invariants for both cases of the
conditional.

The problem Is with the verification condition for the initialization path: the assignment

(z,y):=(I,pos(A,b)2-I) does not initialize the l invariants. So we replace the
Initialization with the new subgoal

assert u!svDA[u]<A[v], A[u]oEW, bebg(A[|:n])
achieve z4pos(A,b), pos(A,b))z+y varying z,.

Since we are given that b appears within the segment All:n], we can achieve the
relation >!poj(A, b) by letting Z=n. Now we can achieve pos(A, b)>zxy by Insisting that
z Y= , for which we Initialize y to -z=-n .

The verification condition for termination Is (3J)(-n/2 >-I), i.e. by repeatedly
halving y, which has the initial value -n , the exit test Y>-i must at some point become
true. This is Indeed the case. Thus, all the verification conditions hold and the
transformed program is correct.

Finally, the conditional test z+y2!po(A, b) , that contains the nonprimitive function pos,
may be replaced by A[z.,+[]). That the two tests are equivalent, may be deduced from
the input specification

assert u~vDA[u]<A[v]

and the definition of poi.

Our program now looks like this:

(Z.,Y) :- (R.,-R)
loop assert Zp0s(A,)), pos(Ab))z.y

until ya-I
y:- y/2
if A[zy l]>b then z :- z+ ft
repeat

assert zxpos(Ab), pos(A,b)>z-I

If we transform the program variable y by y n -7 and simplify, we get

b.

- "V -t- - - .
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P,: begin comment 4rray-search pregrar

assert usvDA[u]SA[v], A[u]cg. beJ g(A[l:a])

( :- (it ) I
loop assert zkpos(A, b), pus(A, b)>z-y

I until YS I
I :uy2

if A[z-y+l]>6 then z :-z-Y fi
I repeat

assert A[z]-b
en'.

I.

Note that transforming a variable that does not appear In the program specifications, such
as y , cannot affect what the program does, only how It does it.

Having found one satisfactory solution, let us return to the point where we compared
the desired goal

achieve zpos(A,b), pos(A,b).i)z varying z

with the output invariants

assert zs-l/, -la<z.e

An alternative way to transform the relation S in the desired goal, Into 2: and ( Into >,
without transforming the predicates themselves, would be to multiply both sides of the
Inequalities by -I . We would thereby obtain the equivalent goal

achieve -zS-pos(A, b), -pos(A, b)-iC-z varying z

Comparing the output Invariant z:S'/i with the first conjunct of this goal, suggests the
transformations

(z -* -z, -/ -* -pos(A,b))

To obtain '*, -pos(A,b) , we would like to use a so (-poi(A, ))2 but since pos(A. b) is

positive, that would give -/av- pos(A, b), rather than -pos(A, b) as desired. As there Is
no easy way out of this problem, we drop this possibility.I.

There Is another way: Just as u~v is equivalent to uv. l for integers u and v, for

real numbers we can transform an expression of the form u ; Into one of form u(v+,
where ( Is an arbitrarily small real number. Similarly u<v Is equivalent to u.SEv. The
(Is may then be eliminated from the resulting program. Thus, we may compare

assert z<(/a.+(, 4,,(z+,

P,,P
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With

achieve zpos(A,b) I, pes(Ab)( z+

which suggests the set of transformations

(a s. pw(A. 02. r so z-1, -, I)

I,

I.

1°



A

PROGRAM MODIFICATION AND DEDUGGING 67

Applying these transformations to the square-root program yields

assert Ps(A,b) 2kl, 1>o

loop assert z-i.Efpos(Ab), pos(A.b)(z-1+E y
until YS I
y:- y12

If (z-I+E+) 2 ;pos(A,b)2 then z-l*1 :- -lE*y fi
repeat

assert z-I.E:pos(A,b), Pos(A,bxz-I+El.

The transformed conditional test (z-.+Ey)2Sp(A, b)2 , may be simplified to

z-I+<Ey5pos(A,b), i.e. z-I y(pos(A,b). To remove the nonprimitive function pos, we
replace the test with A[z+!]ab. Replacing the Initialization and the Illegal assignments,
we obtain the transformed program:

%P': begin comment array-search program

assert u<_vuA[u]5A[v], A[u]eN, bcbag(A[l:n])
S (z,,y) :- (i,n)I

loop assert z(pos(A,b).l, pos(A,b).iz+y
I until y:5I

J ,y := y7/2

if A[z+y]Sb then x :- z+y fi
repeat

assert A[z]=b
an4 .

I__
Replacing the Initialization In general requires rechecking the verification condition for

termination; In this case, (W'aN)(nl2d"I) must hold for the program to terminate, as
Indeed it does.

This array-search program may be given a more conventional appearance if we can
replace z+. (the right bound of the search), which appears twice In the program, with Just

,. To effect z+y * y, we use the global transformation

since z.(y-z)-y. Since the right-hand side of this transformation contains a variable other
. than the transformed variable y, the application of the transformation Is a bit trickier:

* -
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wherever there is an assignment to x, even if y is not changed, we must consider what
happens to the transformed value of y. Thus, the conditional branch assignment z:=z+y
must be considered as though it were (r,,):-(z ,,), which is transformed Into

(z.y-z):-(z.(Y-z),,9-z).

Replacing all occurrences of y in the program with ,y-z, and using the appropriate
achieve statements In place of the transformed assignments, we get:

achieve z=I, --zn varying z,,
loop assert z(pos(A,b)+i, pos(A,b).i<_

until y-z~l
achieve y-z=(y'-z)/2 varying ,
if A[y]:b then achieve z-z'+(7' -'), ,-z-7'-z' varying zy fi
repeat

assert A[z]-b

The initialization subgoal

achieve zxI, y-z-n varying x,y

yields the assignment

(z,y9) := (I,n~i).

Isolating , on one side of the equality In the subgoal

achieve y-z(y'-)12 varying ,

yields

y :- (zy)/2

The conditional-branch subgoal

achieve z-'.(,9'-z'), y-z-'-x' varying z,,

yields the assignment

(z ) :- (y,2-x)

The program, so far, is:

I.

1I..
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(z,y) := (il.i)

loop ssert z(pos(A,b)+l, pos(A,b)+l5y
until y-zs I
S:= (z+y)/2

if AEy]sb then (z, y) :- (y, 2y-z) fti
repeat

assert A[z]cb

There are still a few more changes that may be made: By pushing the loop-body
assignment to y into the conditional statement, we get

if A[(z+y)I2]<b then (z,y) := ((z.y)/2,y) else y := (z+y)/2 fi

Now, by eliminating the superfluous assignment :uy and Introducing a temporary variable
t to contain the value (z+.y)/2, we get

t := (z+y)/2
if A[t]Sb then z t else y := t fi

Our final version of the array-search program Is:
I p

P,': begin comment conventional array-search program

assert u~vDA[u]SA[v], A[u]eN, bebag(A[l:n]) I
j (z, ) :-(i,n I) I

loop assert z(Pos(A,b).l, PosAM y
until Y-zS I
t :a (zY)/2 I
i f A[t] then z :t else y:ti

I repeat I
assert A[zJ]b

I en . I

This chapter has illustrated the use of analogy to modify and debug programs. The
j. next chapter shows how similar techniques may be used to abstract and Instantiate

programs.

11-
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CHAPTER IV

PROGRAM ABSTRACTION AND INSTANTIATION

f

I
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1. INTRODUCTION

When confronted with a new task, a person will often notice a resemblance between

It and some previous accomplished task. To conserve effort, he is likely to adapt the

knowledge he learned on those occasions to the new problem at hand. After solving a

number of similar, problems, he might form a general paradigm for solving such problems by
supresaing the Inconsequential particulars of the Individual Instances. We term the

process of forming a general scheme from Instances of the problem abstraction. and thtat of

applying a general scheme to a particular problem instantiation.

In the programming case, we are given a set of concrete programs, presumably

related in some way, and would like to derive an abstract program schema. The programs

are assumed to be annotated with their Input-output specifications and with sufficient

Invariant assertions to demonstrate their correctness. The first step is to find an

abstraction of the set of specifications of all the programs. This yields an abstract

specification that may be Instantiated to any of the given concrete specifications. For

. , each of the given specifications there corresponds an abstraction mapping that when

applied to the concrete specification will yield the abstract specification. That same

mapping, applied to the given program, yields an abstract program schema. Conversely,

the Instantiation mapping that yields the concrete specifications of a program when

applied to the abstract specifications, will yield the corresponding concrete program when

applied to the abstract schema.

A schema, however, may not be applicable to all possible instantiations of its

specifications. In that case, the schema is accompanied by an Input specification

containing conditions that must be satisfied by the instantiation to guarantee correctness.

These preconditions may be derived from the verification conditions which serve to bridge

the gap between the assertion language in which the specifications are stated and the

programming language in which the program is coded. In cases where the preconditions

are not satisfied by a particular instantiation, analysis of the unsatisfied conditions may

suggest modifications that will help satisfy the conditions.

To date, little research has been done on program abstraction. The STRIPS system

g (Flkes, Hart and Nilsson [1972]) generalized the loop-free robot plans it generated; the

HACKER system (Sussman [1978]) "subroutinized" and generalized the "blocks-world"

plans it generated, but was limited In this respect by Its use of executions, rather than

verification proofs, to determine what program constants could be generalized. Recently,

Gerhart (Apr. 1976] and Gerhart and Yelowitz [1976] have also advocated the use of

program schemata as a powerful programming tool and have recommended the

hand-compilation of a handbook of such program schemata to aid human programmers.

"-,
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(See Yelowitz and Duncan [1977] for a detailed example of the use of schemata as an aid
in program verification and Misra [1978] for an approach to the specification of
schemata.)

In this chapter, we apply program-modification techniques to abstraction. To
generalize the common aspects of two programs P and Q and form a program schema,
we first find the set of transformations for modifying P Into Q. Recall that to modify a

program P so as to obtain a program Q, we look for an analogy P 4* Q between the

specifications of P and Q. The analogy suggests a set of transformations that when
applied to the program P will yield a program satisfying the specifications of Q. Each

transformation is of the form , f; all occurrences of e in the program P are
transformed into f. For each such transformation, the corresponding abstraction

transformation for P is e o v and for Q is f =* v, where v is a new variable symbol.

We are tacitly assuming that the specifications of our programs are expressed
formally and that this specification does express the desired behavior of the program.

This is not a trivial point; it Is not uncommon for errors or omissions to be made in the
original specification of a program. Balzer, Goldman, and Wile [1977] have been
Investigating the possibility of constructing a formal specification from Informal and
incomplete specifications.

Another problem inherent in our use of analogy for program modification and
abstraction, is that the two specifications that are to be compared may have little

syntactically in common. When the specifications are not syntactically similar, it is
necessary to rephrase the given specifications in some equivalent manner that brings their
similarity to the fore. This is clearly a difficult problem. In our examples, we indicate what
may be done In some such cases; In general, some form of means-end analysis seems
appropriate.

In the next section, we present several examples of abstraction and instantiation.

2. EXAMPLES

Three examples follow: in the first, we derive 8 schema for linear search; the second
is an iterative implementation of a recursive definition; the third is a more general binary

search than the one we saw in Chapter Ii.

_ A
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Example 1: Minimum/Maximum Schema.

Consider the following two programs:

P,: begin comment minimum-value program

assert ned
(zy) := (A[O],0)

loop assert z A[0:y], yr:lN
until Y=n

Y := y+I
if A[y]<z then z :--A[y] fi
repeat

assert z<A[O:n]
end

and

Q.: begin comment maximum-position program

assert m,nEZ, mSn
(z, y) : (n,n) i
loop assert A[z]A[y:n ] , yeZ I

until Y=m I
Sy := y-I I
if A.y]>A[z] then z : f i 11
repeat I

assert A[z]>A[m:n] I
end, I

- !I

where the construct p[u:v] Is shorthand for (Vl)(u:5CS;)p(C), for any predicate p, i.e.,
p holds for all values C in the range [u:v]. The output specification of the first program
P1 is

assert z:A[0:n]

it finds a value z smaller than any appearing in the array segment AcO:n]. The second
|- program Q, finds the position z of a maximum element In the array segment A[m:n] ; its

output specification Is

assert A[z]kA[m:n]

(For simplicity we have not included the output specifications zeA[O:u] and mSzdn of

!

b . i I.. . - .



I.

64

P, and ,, respectiveI),)

in the previous chapter we saw how one may derive such programs one from the
other. The obvious analogy between the specifications of the two programs is that where
the specifications of P, have S, z, and 0, the specifications of Q, have Z, A[z],

and m, respectively:

(<, ,z 4* A[z], 0 * m).

l.

1 -i. d ~ m i i i gm ..... .
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Applying the transformations

Cs ,* a, z ,* A[z], 0 ,* m)

to the output specification of P0 transforms It into that of Q,. However, applying these

transformations to the program P, does not yield a program satisfying the specifications

of Q,. This is because the program P, makes use of properties of the constant < that

do not apply to > . Similarly, applying the transformations

(k -, <, z , ps(A, z), m ,* 0)

(where pos(A, x) Is the position of the element z In the array A ) transforms the
specification of Q, Into that of P, , but does not yield a correct program. As we saw in

the last chapter, to obtain a correct program we must examine the verification conditions.

Consider the path initializing the loop in P,:

assert nEN
t. (r,y) :- (A[0],0)

suggest z<A[0:y],, ye .

We are given that neN, and must show that the loop invariants zSA[O:y] and yeW hold
after initializing z to A[0] and y to 0. That Is, to verify this path, we must have

nEn D A[O]<A[O:O] A OeN

Applying the transformations

< *> , z*A[z] , and 00*m

to this condition yields

neW D A[m]ZA[m:m] A me.

The first consequent A[m]>A[m:m] Is equivalent to A[m]A[m] and clearly holds; we are

left with the consequent mlW. This path, the, will be correct If the condition meW is
satisfied.

Next, we consider the loop-exit path

assert z5A[0:y], yen
assert yon

suggest z2;A[O:n]

i.e. the loop Invariants plus the exit test yon must imply the output specification
z<A[O:n]. The transformed condition Is

A[z]ZA[m:y] A yeN A yon A x]A[m:].

'""'
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which clearly holds.

Finally, we consider the loop-body path

assert z<A[O:], yeN
assert n

.,:- Y+l
if AEy](z then z := A[y] fi

suggest zSA[O:y], yeW .

To verify this path, we must show that the loop Invariant continues to hold if the exit test

Is false and the loop body is executed, for both cases of the conditional statement. If

A[. I ]<z before executing the path, then the thten-branch of the loop,

assert z<A[O:-y], yeN
assert yon

y := Y.+
assert A[Y]<x

.~ := z A[y]
suggest z :A[O:y], yEW

Is taken. In that case, we must have

z<A[O:.y] A yeN A yon A A[.+i]<z o A[.,+I]A[O:,+I] A .+leN

Similarly, for the alternative path, we need

zS;A[O:y] A yeN A yn A -(A[.l](z) : z<A[O:vyl] A y+i.eN

Applying the transformations to these two conditions gives

A[z]A[m:,y] A yeN A yon A Ay1](A[z]) D A[y.I]A[m:y+ ] A y IeN

and

A[z]2A[m:y] A yeN A yon A -,(A[y.+I](A[z]) A[z]ZA[m:.I] A y+ieN

Consider the second of these two verification conditions. The consequent .IGeN

clearly holds at the end of the loop body, since yeN held before the path. The

consequent. A[z]>A[m:y I] Is partially Implied by the conjunct A[z]ZA[m:.Y] appearing on

the left-hand side of the Implication; only A[z]>Aby+I] Is not Implied. So we look for

additional relations with which to complete the analogy. On the left-hand side we have the

conjunct -(A[y+ I(A[z]) while the desired A[z]ZA[.y4l Is equivalent to

-'(A(. I ]>A[z]). This suggests the additional transformation

1* •
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With this transformation the first verification condition holds as well.

Thus the four transformations

(Sso, 2, x -* A[z], 0 no m, ( so )

will yield a correct program for finding the position of the maximum provided that the
condition men Is satisfied, in the same manner, it may be shown that the transformations

(k so <, z ,* pos(A, 0), m ,. 0, 0 (

when applied to Q, , wil yield a correct program for finding the minimum.

Now that we have a complete analogy between the two tasks P, and Q. , viz.
I (CS 4* 2>, x ** A[z], 0 4* m, ( 4* >),

we attempt to generalize it to obtain an abstract program scheme embodying the
underlying technique of the program. The generalization of the two predicates S and k
is a new predicate variable a ; similarly, the generalization of ( and > is 8. The
generalization of z and A[z] is z, since z may easily be transformed into A[z] (but
not vice versa); similarly, the generalization of the constant 0 and variable m Is m. In
this manner, we obtain the abstraction mappings

(Sa 4=>,z.z 4=A[z],0.m 0 *m,( >)
* I.e.

(S. 0a,0 -m, 6)

will generalize P, and

(a -* a, z -o ps(, x),) )

will generalize Q.

Applying the first set of transformations,
i ~(s . a,O0 ,* - ),

to the output specification of P, (or the second set to Q,) yields the abstract

|. specification

assert a(z,,A[m:x])

This, then, will be the output specification of the schema. To obtain the desired scheme,

we apply the transformations to P, yielding
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loop assert a(z, A[m.y]), ..
until Y-R

if O(Afy], z) then z :- A(y] fi
repeat

assert a(zA[m:])

Since the abstraction transformations Involve constants, we must examine the schema's
verification conditions. Those conditions that cannot be proved will remain as
preconditions for applicability of the schema.

The verification condition for the initialization path is

o(A[m , A[m]) A me

thus, if

mew

and

for ali u , then that path is correct. The condition for the exit path is

a(rA[ms J) A yeN A y-n D a(z, A[m:n)

which is clearly the case. The remaining two conditions for the twd loop-body paths are

a(A[m.y]) A yeN A O(4~.l],x) D c(A(,.l],A~m:y.lJ) A ykW

and

*(z,A[m:,]) A yeW A --(Abl],z) a], A yde

The conjunct y ie clearly holds In both, and since we are already requiring

a(A(74 1], AE7y 1J) , that leaves

a(zA[m:.y]) A yeW A O(A~y++],z) 3 o(A[+1],A[m:])

and

a(z.A[m:Jy]) A yeN A -(A[.+l],z) D a(A[y+l,)

These conditions may be generalized (of. Boyer and Moore (1976]) by replacing the
expressions A[ y] and A I] that appear on both sides of the implications with
universally quantified variables u and , respectively. The generalized conditions are

a(z,:u) A (i) 3 (v. u)

i.
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and

a(z, u) A -O(v, z) D a(z, v)

(the conjuncts yen have been dropped as , does not at all appear In the consequents).
Finally, there Is a termination condition

(Mew) O4-n;

transforming it gives

(C'EW) M+C'-n

or equivalently, since meN ,

new A m~n

The schema, with its preconditions listed in its input assertion, is

w j S,: begin comment minimum/maximum scaema

assert a(u, u), a(u, z)/a(z, v)c(v, u), a(z, u)A-O(v. z)wa(z. v), m, new. m<51
(zy):u (Aim.m) I
loop assert a(z, Aim:y]), yeN I

I until y=n I

If 1(A[y], z) then r := A[y] fi
I repeat

assert a(z, A[m:n])
I ens 

Any instantiation that satisfies the preconditions is guaranteed to yield a correct program.
Clearly, the predicates a and 8 that appear in the schema should be instantiated to
primitives available in the target language, otherwise they must be replaced by equivalent
predicates for the schema to yield an executable program.

In a similar manner, we could use e, as the basis for the abstraction; we would obtain

a somewhat different schema with the same output specification.

Note that A may be considered to be a function as any other. Thus, this schema can

be Instantiated to find the position or value z of the minimum or maximum of any function
over the domain of integers in the range [m:n]. For example, to find the position z of
the minimum of the function f in the Interval [O:m] , I.e.

1b
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RI: begin comment function miium propse

asoert meN
achieve f(z)<f[O:m] varying z

we compare this goal with the abstract specification of the schema

assert a(z, A[m:n])

The following instantiation Is obvious:

(a .* S,r *(), A *f,m. 0, - m).

Applying this Instantlating to the preconditions

assert a(u, u), a(z, u)Aj(v,z)Da(v,u), a(z,u)A-'e(v,z):a(z,v), m, ncW. mSn

yields

assert uSu, zSuAO(v, z)Dvsu, zSuA-,(v, z)DzSv, 0, mN. O5m

The first condition holds since :; is reflexive; the last two follow from the Input

specification meW. That leaves zSuA6(v, z)DzSu and z:uA-'8(v, z),z:gv. The latter

suggests completing the analogy by letting 0(v, z) so Oz; then the other condition
z5uAz>v:ovu holds as well.

Applying the complete Instantiation mapping,

(a * <,r =f(z), A ,*f ,m ,* 0, * 4 m , *.,, (),

to the schema yields

(f(z),y) := (f(O), 0)
loop assert f(z)<f[O:Y], YEN

until y=m
y :- y+l
if f(y)<f(z) then f(z) :a f(y) ti
repeat

assert f(z)Sf[O:m]

*" Replacing the Illegal assignments, we get the concrete, correct program

1b -. ^
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Re: begin comment function mnimusm program

I assert meN I
(z. Y) :- (0,0) I
loop asort f(z)rf[0: , yeH i

I until y=-m I
I y := Y+ I

if f(y)<f(z) then z :- y ft I
I repeat I

assert f(z)<f[O:m] I
end.

I __ _ _ _ _ _ _ __ _ _ _ _ _ _ _

The same abstraction process would work were we given the two recursive programs

P,'(z, A[0:n]): I
begin comment recursive minimum-value program *1

assert nEN
if n=0 then z := A[O]

else P,'(z,A[0:n-I])

if A[n](z then z A[n] ft

fi

assert zA[O:n], neW
end

and

SQ,'(z, A~m:n]):

begin comment recursive maximum-position program

assert m,neZ, mSn

if man then z := n
I J else Q,'(z, A[ml:n])

* I if A[m])A[z] then z :- m fi
-. I ft

assert A[zJA[m:n], meW

end.

Abstracting these two programs, we would obtain the scheme

1"%
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- %, S*'(+, A+m "J):

begin comment recursive milimumImaxintum schema
assert a(u, u), a(z, u)At(v, z)za(v, u), a(z, u)A-'.(u, z)Da(z, v), m, neZ, m"Sn
if n-m then z :- A[m]

else P,'(z,Aim:n-J])
it 8(A[n], z) then z :- A[] fi

ft
assert a(z, A[m:n]), nedl

end.

V!

Example 2: Associative Recursicr Schema.

Consider the two programs:
I I

Pt: begin comment factorial program I
assert aelN I
Cr(,,) :-(ela)!

loop aspert .;z-a! I
I until Y.O I
I (,,Y) :- (y.,-I) I
I orepeat

assert z-a!

endI

and

I. -
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Qt: begin comment array-summat f prog.m

assert ,dJ IU (z ) :- (o M) i
n

loop "asrt I
I until . 1 IJ, ~(z,y) :- (A(.lz,, i) i

I repeatI

assert zuIrCMA[C]
I I

Matching the two output specifications

assert z=a!

and

assert z=Er.,,4["]

suggests, as one possible analogy,

(u! -E aZ As, *m)

The two functions u! and E, u,4[C ] generalize to a function variable f(u); the input

variables a and m generalize to, say, a

(U! ,, f(u) 0. a m)

Thus, we get the abstract output specification

assert zxf(a)

Both programs consist of a single loop; their respective loop Invariant$ are

assert y-.z-a!

and

assert Er.YA[f]+,.r.A[(.]

r'Matching the Invariant, after applying the transformations already found, gives

.
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end we derive the additional aspect of the analogy

Applying the corresponding transformations to the loop invariants we obtain the abstract

Invariant

assert A(fy), z)-f-(a)

Now, we must consider the verification conditions. The initialization condition of P. is

a!. -a! ,

and applying the transformations we get

h(f(a), l);f(a) ;

on the other hand, applying the transformations to the Initialization condition of Q.,

ErMA~f]+OErmA[C]

gives

h(f(a), O).f(a)

To unify the two, we add to the analogy

1e O,

and obtain the abstract condition

h (a), e)=f(a) .

The loop-exit condition derived from P, Is

h(f(y), )uf(a) A y"O D z.f(a)

from Q<,we get

h/(f(y), z)=f(a) A y=n+Il D z.f(a)

With the abstraction

0 o n 4--n+l,

we get

hcf(), z)f(a) A y.n D z.f(a)

or, equivalently

ah((n), z).z

We .. MM.P
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For the loop-body paths, we have the conditions

A(f(y),z)-f(a) A yon z h(f(,-),h(,z))-f(a)

and

h(f(y),z)=f(a) A yomn :D f(y.l).h(A[,].z))f(a)

for P. and ,,, respectively. To unify y- I ,y I and y w A[y] , we need the additional

abstractions
S(+ g' @,- = 4= A),

where f is the identity function, I.e. iv(u),u. This yields

hf(y), z)=f(a) A y n a h(f(g(y, 1)), hi(y), z))uf(a)

or equivalently

v. 7*~~~n D h(f(g(7, 1)), AMY7), z)h/ ,z

The complete abstraction Is

(u! s* f(u) 4= r.uA[C ]. a %* a 4w m, io, A I * s 0,
o €= nel, + =g = -. o =i = A).

Applying It to Q., and collecting all the preconditions, we derive the schema

S.: begin comment associative ricursion schema
assert h(u,e)-u, h(f(n),z)=z. ,nak (g(3, I)). Al(),z))=A(,),z)

I (z,7) :u (e,a)

loop assert A (f(y), z)-f(a)
I until yan

I repeat

assert z f(a)
end.

r I.

In this manner we have obtained a general schema for computing a function f(a). It
I. - applies to recursive functions f(x) such that f()=# Is a unit of an associative and

commutative function A , and f(u)-h(f(g(u, I)),1(u)) when yan . The schema is similar to
one of the recursion-to-iteration transformations of Burstall and Darlington [1977].

I*r To see how this schema may applied to another problem, consider the specifications

1 N

"- II " ....- 1 '----.... .-, . . ...
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R2 : begin comment fit-reversal program

assert re' I
achieve z=rezerse(r) varying x
end, I

I i

where X is the set of all lists, and reverse(r) is a list containing the elements of r In
reverse order. Assume that we are also given two relevant facts about reverse

fact reverse(())= 0

and

fact reverse(u) reverse(tail(u)).(head(u)) when ul()

where uv concatenates the two lists u and v, head(u) is the.first element of the list

u , and tail(u) is a list of all but the first element, and () Is the empty list.
f .

An initial comparison of the schema's output specification z=f(a) with the new
specification x=reverse(r) suggests the instantiation

f -* reverse .

Instantlating the precondition

Yg n Z h(g(y, I)), h(i(y), z))=hf(y), r)

gives

ya n D h(reverse(g(y, 1)), h(i(y), ))-h(reverse(y), z)

By the second of the above two facts, we have that reverse(y) may be replaced by
reverse(tail(y).(head(y)), provided that y is not the empty list 0. This suggests

Instantlating n .* 0 to obtain

ya 0 :) h(reverse(g(y, I)), h((,), z)).h(reverse(tail(y)).(head(y)), z)

The function reverie appears on the two aides of the equality, so we try to generalize this
condition by replacing both occurrences of reverse with an arbitrary list u. To do that,
we must first unify reverse(g(y, I)) with reverse(taU(y)) by Instantlating g(u, v) -* tail(u)
We are left with the condition

!. ~~~~~~~h(u, h ,,)au(t().z

Similarly, we unify t(u) with (head(u)), the list containing just the first element of u ,
obtaining

A(u AV, z))-h(u., Z)
This matches with
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fact u.(v.w)-(u.v).w,

by Instantiating A =i •, i.e. * is associative.

The Instantlations we have found are

(f = reverse, R 4, ,O g(u. V) =* tail(U), i(U) * (head(u)), h 0.)

Applying them to the other preconditions

assert h(u, e).u, h(f(n), z)=z

yields

assert u'e=u, reverse(O).z=z

But reverse())=() and Oz=z, since the empty list 0 is an identity element of the
function Thus, the second condition holds; the first suggests letting e 0.

The completed Instantiation is

(f =: reverse, n =o 0, g(u, v) =o tal(N), i(u) , (head(u)), h ,*e . 0)

In all, we have derived the following program

R,: begin comment list reversal program

assert re4'
z: O

y :=r I
loop assert reverse(y).z=reverse(r)

until y=()

z (head(y)).z

y tail(y)

repeat

assert z=reverSe(r)

end.

Example 3: Binary-Search Schema.

•h. In the general overview, we saw how a binary-search schema was abstracted from
two programs, one for real division and the other for square roots. In this example, we
shall begin with the array-search program instead of the square-root one; a more general

schema will result.

1b -
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Consider the following two annotated binary-search programs, P, and Q,:

P,: begin comment red-division program

assert Oga(b, O<e

(ZY) :- (0. 1)
loop assert b-zsa, a<b.(z y)

until yeI
y:= y/12

if b.(zy):Sa then z :- z y fi
repeat

assert b.zSa, a<b.(z~e)
end

and

Q,: begin comment array-search program

assert utovDA[u]SA[v], A[u]eN, bebag(A[I:n])

.(z,.) := (n,n)
loop assert z?_pos(A,b), pos(A,b)>z-yI

until Y _II
y := y/2
if A[z-y+l]>b then z :- x-y fi

repeat

assert A[z]_<b, b<A[zl]
end.

Recall that when an Index u of an array A is not an Integer, the Intended element is

The analogy between the specification of P,

assert b-z:Sa, a(b.(zre)

and the specification of Q.,

. assert A[z]b, b<A[zi],

to

(.s v~g * w[v]Su,a * A, u<o.ui 4, v<u[w],c e i)

Tim corresponding abstraction mappings are
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(u-v~w , * (u, v, w) 4- w[vJSu, a -# a 4- A.

Applying these transformations to P, yields the schema

(Z' Y) :- (0, 1)
loop assert o(b, z, a), 05(a b. z~y)

until yse
y :- y/2
if a(b, zey, a) then z :=z~y fi
repeat

assert c(b,z,a), 0(~~z*

In the same manner as In previous examples, we derive the precondition

0 (a. b, u) A usgv D t ,v

for the loop-exit path, and

for the loop-body path.

The verification condition for the loop-initialization path Is

a(b, 0.a) A 0(a. b, 1)

However, If we were to abstract Q, instead, we would get an Initialization condition

a(b, n, a) A 86(a, b, 0)

This Suggests generalizing the constant 0 In P, and n In Q, to J and I and 0 tok .
In this manner, we would obtain the initialization

(z, y) :- Q. k)

with the unified preconditions

ar(b,a) A 06(a.b, k)

Alternatively, we can just preface the loop with an unachieved subgoal

achieve a(b,x,a), O5(a,b,z~y) varying X,Y

stating that the loop Invariant must be achieved before entering the loop.
Adopting the second option we get the schema
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S,: begin comment binary-search schema

assert j9(a, b, u)Au:vDO(a, b, v), -,a(b, u, a)DO(a, b. u)
achieve a(b,z,a), 0(a,bz+y) varying z,y
loop assert a(bz,a), 0(a,bz+y)

until y e

S:=- y/2
if a(b,zey,a) then z :-z+y fi
repeat

assert a(b,z,a), 0(a,b,z+e)
end.

It Is a general program schema for a binary search within a tolerance with the abstract
output specification

assert a(b,z,a), O(a,b,z+e)

To illustrate how this search schema may be used, we consider a variation on the
square-root program:

R,: begin comment variant square-root program

assert O(d, I<c I
achieve z-d<'/c ,/Sz varying z I
ond, I

that Is, the result z may only be greater than the square-root of c by less than the given
d. We would like to Instantiate the binary-search schema to yield such a square-root
program.

In order to match this output specification with that of our schema:

assert a(b, z, a), 0(a, b, z+e)

we let the constant t be the constant expression -d and obtain the transformations:

(a up c, a(b, z, u). lso z, 0(u, b, 0) so v( .lO, r -d).

The preconditions

.-uassrt O(a, b, u)AuSv:O(a, b, v), -a(b, u, a)DO(a, b, u)

instantiate to

•aert u( 'FAuv~v< F, -(.'u)=-u( ".

1b
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The second condition holds, while the first does not. To get the first condition to hold, we

need ukv , rather than u ' , suggesting the additional transformation :; so >

To satisfy the Initialization condition, we need to

achieve a(b,z,a), 0(a,b,zxy) varying z,y

I.e.

achieve /F'z, z+y(,v'varying z,y

We note that since I<c, we have *f(c and (i )-14(4'. Thus, both conJuncts hold
when we let:

(z,Y) := (c, 1-c)

(An alternative would have been to take -c for y, since c+(-c)=O(.1F".)

The Instantiated schema is:

assert O<d, I<c
(2,Y) :- (c, I-c)
loop assert -/Fz, z+y(4"

until ya-d
y := y12
If 4-'Sz+y then z :- z+ fi
repeat

assert -'Sz, z-d(,/.

However, since a involves the square-root function itself, the conditional test is not

primitive and must be replaced. It can be replaced by c;(z y)2 since c and zy are
nonnegative ( 05c follows from the input specification; the relation Ogz+y may be shown
to be a global Invariant). Thus, we have:

I.

r
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R,: begin comment mrLant sqw.-root prograIM
assert O(d, 1<c
(ZY) :- (c, I-C)
loop assert -1'<z. z. <I

I until yk-d

I if C:(z*Y) 2 then z :-z. fi

I repeat

* assert ry#'z, z-d<,r"

end .

In the last two chapters, we have explored modification and abstraction techniques;
In the next two chapters we develop helpful tools for synthesizing and annotating
programs.

.

I iS il Hl/illlI I
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CHAPTER V

PROGRAM SYNTHESIS
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1. INTRODUCTION

Recently, researchers have tried to gain Insight into the haphazard art of programming.
This has led to the development of "structured programming" which has been defined by
Hoare as "the task of organizing one's thought in a way that leads, in a reasonable time, to
an understandable expression of a computing task". One of the guidelines of structured
programming is that "one should try to develop a program and its proof of correctness
hand-in-hand" (Grles [1974]). Much has been written on the subject, including the works
of Dijkstra [1968,1976], Dahl, DlIJktra, and Hoare [1972], Wirth [1973,1974], Conway
and Gries [1973], and others.

The idea Is to construct the desired program step by step, beginning with the given
input and output specifications. In each step the current goal is solved, transformed into
another goal, or reduced to simpler subgoals. Each stage is correct if its predecessor is,
thereby guaranteeing the correctness of the final program. Our purpose in this chapter Is
to formalize some of the strategies of structured programming, thereby contributing to its

f. automation. As we have seen, such methods are needed to complement the techniques of
program modification and Instantiation.

One of the major hurdles in automatic structured programming lies in the formation of
loops. Recent synthesis systems have variously dealt with this problem. Buchanan and
Luckham [1974] require the user to supply the skeleton of the loop, and the system fills in
the details. Sussman [1975] described his HACKER system that creates iterative and
recursive loops with no guarantee of correctness. Darlington [1975], Manna and
Waldinger [1975,1977], and others have described a technique of recursion formation and
the need to sometimes strengthen the original specifications for that purpose. The system
described In Green [ 1976] assumes extensive a priori programming knowledge, such as an
experienced programmer would have. Duran [1975] Investigated the use of loop
invarlants In the synthesis of programs, along lines similar to our iterative loop strategy.
For a survey of these and other approaches to automatic program synthesis, see Biermann
[1978].

The next section contains an overview of the steps Involved In the synthesis of a
simple program. In Section 8, we Introduce some programming rules; In the fourth section,
the rules are employed in the syntheses of several programs. A final section deals with
the problem of extending a program to achieve additional goals. When synthesizing code
to extend a program, care must be taken to ensure that the original specifications

, continue to be satisfied.

tb
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2. OVERVIEW

In this overview, we informally describe the synthesis of a simple program; the steps
in the strategies themselves are explained in the next section.

Program synthesis begins with an initial goal of the form

P: begin comment desired program I
assert input specification

achieve output specification varying output variables
enI

The task is to expand the goal into a segment of code whose execution will terminate with
the relation expressed in the output specification holding between the variables. By

varying output variables

we indicate that only those variables may be set by the program; other variables
appearing in the specifications are Input variables. The statement

assert input specification

specifies the set of values of the input variables for which the synthesized program is
expected to work.

From these specifications, an annotated program of the form

assert input specification
purpose output specification

code to achieve specifications
assert output specification

Is constructed. When control reaches the end of the program, the variables must satisfy
the output specification. The code must be primitive, in other words, it may not itself

contain achieve statements or nonprimitive operators. Thus, a program synthesizer
"complies" the high-level achieve statements into lower-level *code*. The purpose

, statement Is a comment expressing what It is that the following code was intended to
achieve.

It is usually not possible to generate code directly from the initial goal. Rather, at
each stage of the construction, a current goal Is replaced by one or more new, and

k ., hopefully more readily achievable, subgoals, that if and when achieved will imply the
desired relation. Each step must preserve correctness, i.e. satisfying the new goals must

A4- -.
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yield a correct program satisfying the current goal. Thus, the final program is guaranteed
to satisfy the original specifications.

In general, at each stage In the synthesis of a program there is more than one
unachieved subgoal, and for each subgoal there may be a number of possible
transformations that can be applied. Whenever a given choice turns out to be
unsuccessful, a different possibility must be tried. We do not, however, address here the
Important Issue of how to guess which may be the best choice at any particular point.
Kant [1977] describes a system that guides the choices made by a synthesis system
based upon an analysis of expected time and space requirements. Annotation techniques
facilitate such analyses and could be employed in conjunction with the synthesis.

Consider the goal
I I

P.: begin comment god program

assert aeIJ, beN+i I
achieve x:gcd(a,b) varying z

(where N+I is the set of positive Integers), aimed at constructing a program that sets
the variable z to the greatest common divisor (gcd) of two nonnegative integers a and
b,

Were gcd a primitive function of the target language, then this goal could be
achieved by a simple assignment statement:

z :r gcd(a,b)

But having no primitive ged function available, the goal must be achieved in stages
utilizing domain-specific knowledge about gcd. Furthermore, we assume that the set
constructor {... ) and max function are not primitive, or else we could use the
definition

fact gcd(u, u)xmaxlweN:wluAwlu) when u, eZ

(where the predicate wiu means that w divides u evenly) to assign

x :- maxfweN:wJaAwb)

Note also, that were It not specified that only z may be varied, the goal could be
achieved by the assignments

(z, a) : (b, O)
,I .since a-O and zub Imply zagcd(ab).

"[' t "- .--..... . .
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Not having any way to directly

achieve z-gcd(a, b) varying z

the first step in the synthesis might be to Introduce program variables whose values may
be manipulated by the program so as to achieve the goal. To this end, the goal may be
replaced by the conjunction of two subgoals

achieve z=gcd(s. t), u=gcd(s, t)Du=gcd(a, b) varying x, s, t

The second subgoal u=gcd(s, t)u=gcd(a, b) requires that for any value u , if u is equal to
gcd(s, t) - for some values of the new program variables s and t - then it is also equal
to the desired value gcd(a, b). In particular, if the variable z has the value gcd(s. t) at
the same time as the second subgoal holds, then the original goal zagcd(a, b) is satisfied.
Since the Implication u=gcd(j, ):)u=gcd(a, b) must hold for all values of u , it is equivalent
to the simpler gcd(s, ,)=gcd(a, b). Our current goal, then, is

achieve z=gcd(s, ), gcd(s, t)-gcd(a, b) varying z, s, t

At this point, we would like to simplify this goal, which is composed of two conjuncts,
by splitting it into two consecutive nonconjunctive subgoals. Choosing to first achieve
gcd(s, t)=gcd(a, b) and then z=gcd(s t), we get the two subgoals

achieve gcd(s, t)=gcd(a, b) varying s, t

achieve z=gcd(s, t) varying z, s, t

each of which Is simpler than the conjunctive goal. However, in so doing, one must ensure
that achieving the second subgoal will not "clobber" what was accomplished by the first
subgoal. This point will be taken up later.

To achieve the first subgoal

achieve gcdU, t)-gcd(a, b) varying s, t

It suffices to

achieve (s, t)=(a, b) varying s ;

to achieve the latter, we can assign

.- (st) :- (a, b)

Matching z-gcd(s, t) with the domain-specific knowledge

fact gcd(O, u)=u when ueN. I

stating that If U is positive, then the gcd of u and 0 is u, we get

( t u,z *. u) ,i.e. z-gcd(s,,) if s-O and z-teN+l. Thus, the remaining subgoal

achieve. z.gcd(s, t) varying z, S, t

P ...- " - .



88

may be replaced by the sufficient

achieve z=t, tel., s=0 varying zst

Again, we may split the conjunctive goal into two consecutive subgoals

achieve s=O, teN+l varying s,t

achieve z=t varying z.

Notice that we have allowed the first subgoal to vary s and t, but not z , while the
second goal may vary only z, leaving the values of s and t unchanged. Achieving the
second goal, say by assigning

X :- t

will therefore leave s=O and teW+i once those relations have been achieved by the
preceding subgoal.

W. . It remains to

achieve s=0, teN+ I varying s, t

To achieve s=O, we do not want to simply assign s:=O, since this will undo the previous
assignment s:=a ; on the other hand, we must vary the value of s since a is not
necessarily 0 . To resolve this dilemma, recall that we set (s, t)=(a, b) only In order to

achieve the relation gcd(s, t)=gcd(a, b). So, if we can "protect" this latter relation while
achieving s=O, rather than protect the stronger (st)=(a,) ), then when s=O is achieved,

th4 desired relation gcd(s, t)-gcd(a, b) will still hold.. The protected relation
gcd(s, t)=gcd(a, b) is termed an invariant ssertion; It is associated with a specific point in

the program segment, and expresses that part of the goal that has already been computed
whenever execution reaches that point. (It is the inductive assertion used In Floyd's
[1987] method of proving program correctness.)

An alternative, but equivalent, way of viewing this solution is as follows. The original
purpose In having Introduced the variables s and I and set (s, t)=(a, b) was to enable us

to compute z,,gcd(s, t) rather than z-gcd(a, b). So, we must make sure that, though the
value of s is changed, it still suffices to achieve zmgcd(s, t) , i.e., achieving z-gcd(s, t) for
the new value of s will Imply zzgcd(s, t) for the old value as well. The relation z=gcd(s, t)

Is then called an invariant Purpose; it expresses the ultimate goal throughout the
computation. (it Is the assertion used for sublo Induction, see Manna [1971] and Morris

and Wegbrelt [1977]).

To achieve szO while protecting the invariant relations, we construct a loop of the
form

i:.:

-I
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loop assert gcd(s,t)=gcd(a.b)
purpose z=gcd(s, f)
until s=O
approach s-0 varying 391

repeat

The statement

assert gcd(s, )=gcd(a, b)

contains the invariant assertion of the loop; the statement

purpose z=gcd(s, t)

contains the invariant purpose. For a relation to be an invariant assertion of a loop, it must
hold upon entering the loop, and assuming that It held before executing the loop body, then

It must hold after. For a relation to be an invariant purpose of a loop, it must be the goal
upon entering the loop, and assuming that it is the goal before executing the loop body,
then it must be the goal after.

The loop-body statement

approach s=O varying s,(

expresses the desire to make definite progress towards the goal s=O with each loop
Iteration. Since s Is set to the nonnegative Integer a before entering the loop, it follows
that the loop decreases the value of 3. Thus, we can ensure loop termination by
monotonically decreasing the integer s, while s remains nonnegative; the loop-body
subgoal, then, Is

achieve seN, s(s' varying s,t

where s' denotes the value of s prior to this statement.

The other conjunct of the subgoal teN+1 is true upon entering the loop, when

i-b&b4. I , and must be kept true by the loop. Within the loop, we also wish to protect the
Invariant assertion gcd(s, t)=gcd(a, b) and invariant purpose z-gcd(s, ) . If
gcd(s', t')=gcd(a, b) holds for the prior values of s and t, then gcd(s, t)=gcd(a, b) will hold
for the new values, provided that gcd(s, t)-gcd(s', t'). This relation also maintains the goal
z-gcd(s, 0): If gcd(s, t)=gcd(3', ') and the goal z=ged(s, () can be achieved, then

I. - z-gcd(s', ') will be achieved as well. The complete loop-body subgoal is

achieve seN, s(', teN+I, gcd(s,t)=gcd(s',t') varying s,t

Matching the information about the domain expressed in the

fact gcd(rim(u, v), v).gcd(z, u) when uteW, veN+ I

IN
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with the conjunct gcd(s, t)=gcd(s',t') suggests letting t-s' and s=rtm(t', s'), leaving the

goal

achieve seN, ss', IEN+l, t=s', s=rem(t',s'), t'cW varying s,t

Since s=rem(t',s') and

fact rcm(u,V)<v, rem(u,v)CbJ when ueN, VeN+I ,

the conjuncts sje and s<s' hold, provided that t'eh and s'eW+ . Recall that we are

assuming that the Invariants t'eN+l and s'cN are true. For the loop-body to be

executed, the exit test s=O must have been false, Le. s'o0 ; therefore, s'eAWI . Finally,

we are left with the goal

achieve t=s', s=rem(s', ') varying s, t

suggesting the multiple assignment

(s, ) :- (rem(s,t), )

Since for each step in the construction, achieving the new subgoals satisfies the
previous goal, the final program,

P,: begin comment gcd program

assert a,bJe, axOVbxO

purpose z=gcd(a, b)

purpose gcd(s, O=gcd(a, b)

(s,t) := (a,b)

assert gcd(s, )=gcd(a, b)

- loop assert gcd(s, t)=gcd(a, b)

purpose z=gcd(, t)

until s=O
(s, t) :- (.m(, t),s)I

repeat

Z :- t

assert z-gcd(a, b)

end,

Is guaranteed to achieve the Initial specifications

assert a. bGa

achieve x-gcd(a, b) varying z

In the next section, we formalize our program-synthesis strategies.

TN4
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3. STRATEGIES

In this section we present some programming strategies; each transforms a given goal
into code containing simpler subgoals.

I. Strengthening Rule

The strengthening rule Is used to replace a goal by another sufficient goal:

achieve a(i) varying i

fact a(i) when 0(u)

purpose a(i)
achieve 0(i) varying

assert a(i)

9
This rule states that if it Is known that achieving 0 will imply that the desired relation a
holds, then replace the goal

achieve a(i) varying i

with the "stronger", but presumably simpler, subgoal

achieve 8(i) varying u

For example, the goal

achieve z=gcd(x, y) varying x, Y, z

may be strengthened to

achieve x=O, z=y varying x,y,z

since the

fact gcd(O, u)=u

tells us that zmgcd(x, y) when x=O and z=y.

The goal 0 may also introduce new variables i, yielding

achieve 0(i, i) varying i, i

The values of the new program variables are set by the code generated from this subgoal,

but 8 must Imply a for any values of i. Note that this means that 8 need only be

1
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achieved for some values of i; their final values are unimportant as they are not output
variables. Some generally useful transformations of this sort are expressed by the
following facts:

tact p(i) when p(v-), p(v-)Dp(i)

fact p(W)when p(), i-= ,

fact p(f(i)) when p(f(i), f(i)f(vi)

and

fact p(f(s)) when p(O), vsf(ii)

For example, the goal

achieve z=gcd(a, b) varying z

may be transformed Into

achieve z=gcd(s, (s,r)(ab) varying z,s,t

or to

achieve zzgcd(s. t), gcd(s, t)=gcd(a, b) varying z, s, I

In any case, z=gcd(a, b) Is Implied for any values of s and t.

A special case of this rule Is the replacement of a goal by a logically equivalent, but
simpler, goal. For example

achieve x=O, x-y varying x,y

may be replaced by the equivalent

achieve x=O, y O varying x,.

2. Assigment Rule

Assignment statements are formed by the following rule

achieve y,=f 1(i), ( .... ,n=f,(i) varying y,,,, . . . ..

purpose 3,mf,(i), y,-f2(i) .... -

assert y,uf,(i), y,-f,(x), .... Y.-f 1 (),

. 1

iN
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where the variables ',Y. ... *, do not appear in , and f',. . . are
composed of only primitive operations. For example, the goal

achieve x-O, y=O varying vy

may be achieved by

(x.,) := (0,0)

This rule suggests that one first attempt to isolate variables on one side of an equality,
e.g. a goal of the form

achieve g(y)-f(x) varying y

should be transformed Into

achieve y-g'f(x)) varying y

where. g- Is the Inverse (assuming that it exists) of the function g.

S. Codiffone Rule

Conditional statements are formed in the following manner:

purpose a(i)
achieve &i), u(i) varying i

purpose a(i)
it 8(u) then achieve f(V) protecting 86(i) varying

else assert -8(i)
achieve a(iu) varying i
fi,

provided that the relation 0 Is computable, i.e. when 8 i composed of primitive

functions and predicates. In other words, one way of achieving 8 Is to test If it holds:
when It does, protect that relation while achieving the remainder; when It does not hold,
try to use that fact while achieving the original goal.

For example, to solve the conjunctive goal

purpose z.gcd(x,y)
achieve x-O, z-y varyinzg z,

we may test If one conjunct already holds:

L N
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purpose z-gcd(x, y)
if x80 then achieve za varying z

else assert xX0
achieve z-gcd(x, y) varying z

ti

4. Splitting Strategies

Suppose we have a conjunctive goal of the form

achieve v(ay), i'(i, )varing , ,

the ii variables appearing only In 7. We would like to split this goal into two
consecutive subgoals, first achieving 8 and then 7:

purpose &v-). , (u)
achieve 8(v() varying i
achieve '(i, i) varying i. i

assert O(W), Vi,W) .

Unfortunately, things are not as simple as that. As pointed out earlier, the problem is that
in achieving the second goal 7, we may unwittingly destroy the relationship 8 that has

already been achieved. We must, therefore, somehow maintain 8 while achieving 7. We

consider three "protection" strategies for achieving the second subgoal, 7 , while
protecting the first, 8 , from being undone.

0 Disjoint Goal Rule. If In achieving the second subgoal 7, the value of i need not
be set, then clearly the two subgoals are Independent. We have then the consecutive
goals

achieve 8(u-), ' ,v-) varying i, i
purpose (i) (i,i)

achieve 8() varying
achieve 7(i,v) varying i

assert 0(i), V(i,;)

For example, the two conjuncts of the goal

achieve x=O, zx- varying x,y, z
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contain different variables. We can therefore spilt it Into

purpose x-O, zxy
achieve x*0 varying x
achieve zra varying Y, z

assert x-O, z=.

* Protection Rule. Another strategy Is to Insist that after each stage executed In

achieving 'Y, 9 remains true for the current values of the variables:

achieve ( Y-'), F(i, u) varying gi

purpose 0(u), 7(i, )
achieve 5()varying
achieve 7(5, v) protecting 0(-) varying i,

assert 0( ), 7(i, )

One way to protect a relation is to insist that Its variables do not change value, i.e. i~i',
as In the disjoint goal rule above; another method is the formation of a loop, with the
protected relation serving as the invariant assertion, as we shall see.

For example,

achieve zzgcd(s, t), gcd(j t)-gcd(qi) varying z,s, t

may be broken into

achieve gcd(s, t)=gcd(a, b) varying s, t
achieve x-gcd(s, t) protecting gcd(s, t)*gcd(a, b) varying z, s, t

S Preservation Rule. Assume that the program variables i are not output variables,
rather they were Introduced to facilitate achieving some purpose a(i). Then the final
values of I are unimportant, and one need only achieve 5 and 7 for some arbitrary

values of , As we saw, the protaio ide achieves both S and 'Y for the final values

of F ; while in the disjoint rule, the values of i are the same after achieving 7 as after
achieving 5. A third possibility is that after achieving i5 for some i, one achieve ' for
those same values of i though the current value of i may be changed in the process.
The only requirement Is that achieving 7 for the new values of i also Implies 7 for the

previous values of W. (Equivalently, If 7 was the goal for the old i, then 7Y remains

the goal after this stage - for the new .) Thus, by achieving 7 , we end up with 0S and

7 holding for the old values of .
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The rule Is

purpose a()
achieve (n), 'Y(, ) varying ',

purpose a(ii)
achieve 06V) varying
achieve 'Y(iu,vi) preserving 'Y(iuv) for varying ii,

assert a(i)

The second goal Y may then be transformed further. In particular, this rule can lead to a
loop, with the preserved relation serving as the Invariant purpose of the loop. We require
that 7 remain the goal for current values of the variables throughout the achievement of

7 itself.

For example,

9 . achieve xugcd(s,t), (s,t)w(ab) varying z,s,t

may be broken Into

achieve (s,t)-(a,b) varying s,t
achieve zugcd(s. ) preserving ztgcd(s, t) for s, t varying z, s, t

The second subgoal may then be strengthened to

achieve s=O, zat preserving zugcd(s, t) for s, t varying z, s, t

To summarize the difference between the last two rules, we may say that the
protection ride applies to goals already achieved, while the Preservaion rut$ applies to goals to
be achieved.

5. Loop Rules

The loop rules allow a given goal to be achieved step by step. We present two rules

for forming iterative loops and a rule for guaranteeing their termination. We also Include a
recursion-formation rule.

I.

1.11
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0 Forward Iterative Loop Rule. Given a goal of the form

achieve 0 protecting a varying

(preceding code has achieved a and we wish to keep a true while achieving 8 ), the
following rule will generate an iterative loop:

achieve 6G) protecting a(i) varying
purpose 0(i), a(i)

loop assert a()
until M6i)
approach 0(i) protecting a(i) varying ii
repeat

assert (E), a(i)

This s permissible provided the exit test 8 is primitive.

The statement

assert a(i)

is the invariant assertion of the loop stating that a is true whenever execution reaches
the beginning of the loop. it is invariant, since it is given that a is true when the loop Is
first entered (and only needs to be protected), and the loop-body subgoal

approach 1(i) protecting a(u) varying

will ensure that a remains true after each iteration. The loop will terminate when the exit
condition 8 becomes true; at that point both the invariant a end the test 0 must hold.
In order to guarantee that loop execution will Indeed terminate, we must make definite
progress towards 8 ; this Is the meaning of "approach".

For example, the goal

achieve s-O protecting gcd(s. OzgId(a, b) varying .j,

suggests the loop

4purpose S.. gCd(s, ).gd(a, b)
, . loop assert gcd(s, )-ld(s, b)

until s-O
approach S-O pretecting d(So)ceA,) vaYing St
repeat

,,. * assert sao, ged(s, )-gcd(e, b)

The new goal

I I I_ .. ..N. ,, . . . .. .. .. ..



approach s=O

can be achieved by decreasing the value of s, provided that s was nonnegative upon
loop entry. The invariant must be protected in the process.

* Backward Iterative Loop Rule. For the case where we wish to achieve a relation 8
while preserving an ultimate goal a , we have

achieve 0(u, F) preserving a(-u, u-) for w varying i, 

purpose 0(i. F)
loop purpose a(i, V-)

until 0(i, )
approach Mi, v) preserving a(i, W) for i varying U, F
repeat

assert Mi,- .)

As with the forward loop, this Is permissible only if 85 is computable.

The purpose of the loop is to achieve the exit relation 8 while preserving the
ultimate purpose a . The loop will terminate when the exit condition 8 becomes true; at
that point, the fact that 8 holds may be used to help achieve the purpose a . The
statement

purpose a(Ri

contains the invariant purpose of the loop and states that whenever execution reaches
the beginning of the loop, what remains to be computed is a , for the current values of the
variables ii and F. Upon exiting the loop, the goal Is a', and a Is the goal whenever
the loop-body subgoal

approach 8(i, F) preserving a(i, F) for i varying i, i

Is executed.

For example, the goal

achieve s-O. tat preserving g cd(s, t) for j, t varying z., t,

may be split Into disjoint goals

achieve saO preserving x-gcd(s,t) for 5,t varying 5,t
assert S-O

purpose at

achi*ve at preserving apd(s,t) for s,1 varying z

MEN
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By assigning vat, the subgoal zit Is achieved as is the preserved goal z-agd($, t) since

suO . Letting a be z-gcd(s, t) and 0 be s-O. the remaining subgoal

achieve s-O preserving z-cd(s. t) to j. varylag s,

may be transformed into the loop

purpose s-O
loop purpose z-gcd(s, )

until s-O
approach s-0 preserving z-cd(s, t) for s, t varying s, 1
repeat

assert juO

Within the loop, the purpose zugcd(s, 1) must be maintained while making progress towards
f , J-0.

ma

* Termination Rule. Assume that we are given a loop-body subgoal

approach 0(u) protecting a(i) varying i .

Clearly in order to make progress towards 0 , one of the variables ii must be changed,
i.e. isi'. This is not however sufficient to ensure that 0 will ever be attained. What
we need is the notion of well-founded set: a aieU-fosnded St (W.>) consists of a set of
elements W and an ordering > defined on the elements, such that there can be no
infinite descending sequences of elements wi>w2X .... So, if throughout execution of the

loop we keep iieW , for some well-founded set (W. >) ,and insist that with each iteration
5 Is reduced in that ordering, ie. '>i , then termination Is guaranteed. In particular, we

must have i,,Ii, where i, denotes the value of i upon entering the loop and u,
denotes the value upon exiting. (To determine this, we may use whatever facts are known
about i and ,e.g. a(u*), ,end 0(,).)

We have, for forward loops, the termination rule

assert u,,i~,cW, i) U*
approach 0() protecting a(-) varying i
assert -'O()
achieve i'Ai protecting a(i), ieW varying i

and similarly for backward loops

lb

- i i- IF .. .. . iii . . . . I . . . __ i. . . .



w 100

assert ;Ns,, i kW, *
approach XR) preserving a(iu) for varying E

assert -W(i)
achieve ii')i preserving a(i), iGeW for i varying i

where (W, >) is some well-founded set.

The well-founded set most commonly used for termination proofs Is the set N of
nonnegative integers under the > ordering. When dealing with more than one variable,
the lexicographic ordering on n-tuples Is useful. For example, to use the lexicographic
ordering for two variables u and v, we first look for well-founded sets Wa and W.

such that ueW, and ugw t . Then we consider the pair (u, v) and require

achieve (,', v')).(u, v) protecting o(u, v), ueW,, VeW, varying u, v

where > Is the lexicographic ordering on pairs, I.e. we must

achieve u'>uV(u'=uAv'>v) protecting a(u.v), u4EW,, vew,

varying u, v

Another, often useful, way of handling several variables is based on an assumption of

monotonicity for each variable. Determining, for some variable u , that the Initial value u,

Is greater than the final value u* suggests that u decrease monotonically, i.e. u' ,u. In

that case, we may also

assert uou>U*

within the loop (provided we can determine the values of u0 and u* ). Given two

monotonic variables u and p , termination may be ensured by requiring

achieve Os':u, v'lv, u'>uVv'>w

protecting a(u.V), uCW,, eW,, UIPU*, Ov varying u,,v

In other words, each iteration reduces the value of one of the variables, without increasing
any other (cf. the multiset ordering on {u, v) in Dershowitz and Manna [Mar. 1978]).

I.

.. ...NI|
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9 Recursive Loop Rule. The following rule forms a recursive loop:

assert p(ii), ilVW

purpose a(is)

assert io(W). W, i>)4
achieve a(-) varying

assert a(i)
assert w(i), ieW
P(): begin purpose a(i)

aert 4(1), RIW, i>i
purpose a( )

assert a( )

end
assert a(;)

The current goal is

achieve a(i) varying i

while the code that is being synthesized - call it P - has the similar

purpose a(i).

Before we can insert a recursive call P(), we must know that the input assertion v is

satisfied by the arguments 1. Furthermore, to guarantee that the recursion will not
continue -forever, we require I i in some well-founded ordering (W, >).

Conditional-formation techniques are the subject of Luckham and Buchanan [1974]
and Warren (1970]. The achievement of conjunctive goals is the topic of Waldinger
[1977]; protection mechanisms are used for this purpose by Sussman [1975]; Sacerdot)
(1976] addresses their nonlinear nature. The use of Invariants for the automatic
construction of Iterative loops Is also discussed by Duran [1976]. Recursion-formation
techniques are discussed In detail by Manna and Waldinger [1977]; similar work appears in
Biklossy [1974] and Darlington [1976]. Misra (1975] gives criteria for a loop to be
formed directly from the speclflcations.

In the next section, we apply these rules to the synthesis of several programs.

1b.
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4. EXAMPLES

Our first example is a straightforward synthesis of the integer square-root function.

Arrays are Introduced in the second example, which is a program to find the position of a

minimal element of an array. Our concluding example is Hoare's Partition algorithm [ 1961];

It is a noptrivial problem, requiring some degree of understanding and ingenuity to program.

Example 1: Integer Squart-root.

in an earlier chapter we developed a binary integer square-root program from a

schema; In this chapter our goal is to synthesize some program satisfying the

specifications

I I
P,: begin comment integer square-root program

assert aeN I
achieve z=L-J varying z
end

from scratch. The program should set the variable z to the largest integer not greater

than the square-root of a , for any nonnegative integer a.

We assume that the - function is not primitive; otherwise we could *achieve our

goal using the assignment rde to obtain

z :- LA4J 

Therefore, as a first step, we endeavor to replace the goal with one that does not contain

t-e - function.

Using the definition of LuJ,

fat v-LuJ v vSuAu(v.+AvIZ

the goalh g achieve z-L,'iJ varying x

may be transformed into the equivalent goal

-" "5 . o
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purpose z=uL'i

achieve z:54, di(z~i, zcZ varying z
assert zXL'/'J

Using the

fact uS5/ a u2Sv when u>O

to eliminate the %- operator, the conjunct z54i7 may be replaced by z2 g and va<Z* I

may be replaced by a<(z+1)2 , with the side conditions zZO and z.I 0 added:

achieve z2Sa, z>O, a<(z+l) 2, z+lkO, zeZ varying z

This simplifies to just

achieve z2Sa, a<((z+)2, zeN varying z

The above subgoal is a conjunction of three relations; the Protection rule suggests
splitting it into two consecutive subgoals:

purpose z2 <a, a<(z+1)2, zeN varying z

achieve a<(z*i)2, zeN varying z
achieve z2sa protecting a<(z+1) 2, zeN varying z

assert z2 Sa, a((z+i)2, zeN varying z

Later, we shall see what alternative splittings might result In.

To achieve the first subgoal

achieve a<(z+1)2, zeN varying z

we apply the strengthening rule to this subgoal, using the transitivity of inequality
expressed in the

fact u<w when utv, vgw

obtaining the stronger

achieve a<, vzs(z.I) 2, ZeN varying z,vz

Now, the

fact uSU2 when uklVuSO

'- -,-, - .. .. . . . . . .
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tells us that taking i.E tar v will give vS(z+I) 2 , provided that x.I-j,-Vz1%O0. The
subgoal ZEN Implies z+iU1 leaving

achieve a<r+ 1, ZEN varying z

Since v Is not an output variable, It has been eliminated tram the goal. The goal may be
strengthened further to

achieve a2z varying z,

by matching it with the

fact s<u~v when 0>O

This goal, In turn, may be attained by the simple assignment

purpose a((z+ 1;2 , ZEN
9Z z:= a

assert z=a

The forward loop rult suggests turning the second subgoal

achieve 2 :a protecting a<(z. 1)2, ZEN varying r

into a loop with the Invariant

assert a((z* 3)2, ZE

maintained true until the exit clause

Until 22S4

becomes true. We have the skeleton of a loop-

purpose a422 ZEN
z :0 a

assert ZR4

purpose z2Sa, 4(2+1)2 , XG1

loop assert a((zI)2, ZEN
until x2S

approach z25a protecting a((z. 1)2, ZEN varying r
repeat

as"er z2SU, a((z+l2, ZEN

1lb
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Within the loop body, we must

approach x2Sa protecting s((zl), zwa varying z

In order to make progress towards the exit test, while protecting the Invariants.

To ensure termination of this loop, the terviatflm rule requires that the nonnegative

Integer z be reduced In some well-founded ordering. We note that upon exit z*2.,

while upon entering the loop z0-a. Therefore, zSz*2sz0, and we hypothesize that z is

decreasing monotonically from a to it final value. We therefore take the set of

nonnegative Integers N under the usual ) ordering as the well-founded set. We have

obtained the loop-body subgoal

assert az 2

achieve z'>z protecting a((z*l)2, zeN varying z

i.e. we wish to set the nonnegative integer z to a value less than its current one, while

protecting the loop invariant a((z+1)2. The assertion indicates that the exit test 22 Sa

does not yet hold if the loop is being continued.

With each loop Iteration we wish to decrease the value of z, while protecting the

invariant a((z+ 1)2. Using the transitivity of inequality again, suggests looking for some v

such that a(v and v<(z+I)2 . But az'2 may be asserted for the previous value of z

therefore, to achieve .a((z*1)2, we need only schlevb z' 2 s(z+l)2 , i.e. z'<z+l . This

leaves us with the goal

achieve zOz, x'<z.l protecting zeN varying z

which Is equivalent to

achieve z=z'-I varying z

and may be achieved by the assignment

Z :- z-I

We have derived the program

o.

I l : .. -. ..
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I I

P,: begin comment an integer s re-root programl

assert ae I
Z :-e a
loop assert a<(zl) 2 . ZEN I

I until z
I z := Z-11
I repeat I

assert z-LJ I
I end. I

With most of the subgoals left In, the program would look like:

P,: begin comment a cluttertd integer squart-root program

j I assert aeiN

purpose z=LiJ
I purpose zra-, v (z+l, zeZ

purpose Asa, a<(rl)2 . ZEN

I purpose a((z+) 2 , ZEN
I z :=a I
S1assert z=a

purpose z2a, a((z+l)2 , ZN

I loop assert a<(z+I)2. ZEN

I until z2 SI

I purpose z'>z, a<( zei)2 , zji
I purpose z'>z. r'Sz.0l. ZEN
I zr :8 -II

I asert z'>z, z'SZji, ZN

a assert z')x, a<(x+1) 2 , ZEN

I repeat

I assert z2 U, a<(.1)2, I
assert z2, a<(zl) 2 , zEN

i assert Zw, fa<z .l, xeZI
assert z-[4"5J
end .

1h.



PROGRAM SYNTHESIS 107

What would have happened had we split the goal

achieve z2 a, a((z+ 1)2, zeN varying z

In a different manner? Had we chosen to first

achieve x2 Ue, zEN varying z

and then

achieve 4<(z+l)2 protecting z25, zEIN varying z

we would be led In a similar manner to the loop skeleton

achieve z2 5a, zEN varying z

purpose r2, a<(rl)2, zEN

loop assert z2 sa, zEN

until ((z+l) 2

* . approach 4((z.i)2 protecting z2 4, zEN varying z

repeat

assert z2 sa, a((z+l) 2, Z4EN

To achieve the Initialization subgoal, we note that the Input assertion aeJ implies a>O.

Therefore, to achieve z2 .a , It suffices for z2SO. But the

fact 05u2

implies that 22=O, so we may Initialize z:-O. We would then decide to approach the exit
test by Lncreasing z from 0. To guarantee termination, we could use the well-founded set

of integers less than vf; the smaller the integer, the greater it is In the well-founded
ordering. Continuing in a manner paralleling the derivation of P, we get

I.

.

i .
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P P': begin comment aElternatim ingr spare-rot program
assert aENz :-o 0
loop z2:Sa, EN

until 6((Z.19

I . repeat
assert z-LIY'iJ
end.

I j

In the section on extension, we shall see how this program may be Improved.

Had we split the goal

achieve zSv5, q<z+l, zEN varying z

into

achieve zeN varying z

achieve z22, a((z+l)2 protecting zEN varying z

we would be led to

assert aN

achieve zeI varying z

loop assert zaN

until z2 SaAa((z1)2

approach z2aAa((z.I) protecting zEN varying z
repeat

assert z-L4J.

The choice of Initial value for z such that zeN Is completely arbitrary; to ensure
termination we would have to first determine whether the chosen Initial value Is less or
greater than the desired final value.

I

,tk
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The resulting program would be

assert aeN
Z :E N

loop assert zeN

until z2SaAa((z+i)2
if z2 a then z :a zl else z :2-1 I
repeat

assert z ,ra

where z:veN is a nondeterministic assignment of some element of the set N to the
variable z. This solution is more complicated than either of the previous two possibilities.
in general, it is advisable to maintain Invariant as much of the goal as possible and keep
the exit test as simple as possible.

Example 2: Array Minimum.

In this example, we wish to synthesize a program to search for the position of a
minimal element In an array segment. Our goal is to synthesize a program for

P,: begin com enont array minimum-poition program
assert ,JEIN, 1 :

* J achieve A[z]SA[i:J], i:Szj varying z 
end.

The conjunct A[x].SA[i:J] Is short for (Vf)(iJSJ)A[z];A[f]; in general, for any predicate

p, p[u:v] Is short for (VXuS'Sv)p(f). Note that the array A Is constant and only the
value of the variable x may be altered by the program. In other words, we wish to set
the variable z to the index of an occurrence of the smallest element in the nonempty
array segment A[iJ].

Using the

fact p(i) when P(-) .

this goal may be strengthened by IntroducIng a new program variable y and substituting It
for the constant i ; the conjunct r- must be added to the goal. Introducing a new
variable will allow the program to manipulate its value so that the goal may be achieved in
stages. We deriveiN.
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purpose A[z:SA[1.1], iSzsj
achieve A[z]SA[y.j], ySrJ, .1i varying z,y

assert A[z]:Al .J), gzsj

Using the protection rule, we shall attempt to achieve this goal in two stages, first
achieving both A[z]SA(y.] and y<z~j and then achieving y=1:

achieve A[z]A[yJ], y<z<J varying z,,
achieve y-i protecting A[z]SA(,.1], ySzsJ varying z,.

By matching the first goal

achieve A[z]SA[y], ySzsJ varying z,y

with the

fact pin:u] when p(u)

the goal may be strengthened to

achieve A[z]<A(J], y=J, ySzSJ varying z,.

Using reflexivity

fact uSu

to further strengthen this goal, we get

achieve A[z]uAJ], y=J, ySzSj varying zy.

Now the

fact f(u)-f(v) when u-v

for any function f (the array A may be considered a function), suggests

achieve zuJ, 7=J varying ,,y.

This Is in turn achievable by the multiple assignment

We are left with the subgoal

achieve y-1 protecting A[z]SA .l], ySzJ varying z,,

which, by the forward-loop rde, suggests the iterative loop

| . .-.. -t . . ...... m m
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loop art A7zJ5A~fl], ySzSJ
until YzL
approach yzL protecting A[z]SA[y:J], yz varying z,y
repeat

assert A[z]5A[.]J, ySz:5J, y-1

The remaining loop-body subgoal is

approach y-i protecting A[z]SA[y], ySz j varying z,.

By noting that upon entering the loop yuj and upon exiting the loop Y*i, where it Is

given that L<J, the terminatio rnde suggests that the variable y remain an integer and
decrease monotonically from J to 1. Including the range of , we now have

assert yx
achieve y')y protecting A[z]:Ay.J], ySz!J, yeZ, iskSj varying z,,

In other words, assuming that the goal y-i has not yet been achieved, we wish to
decrease y while protecting the Invariants A[z]SA[y.J] and Y!;z;j along with the added
invariants yeZ and L;y;J for termination.

Since we are assuming that y'eZ and i y' hold, and we know that for the loop to be
continued y'si, it follows that LCy'- I. So, In order to achieve is_<, we need to achieve
Y'- 15 . This, together with the additional requirement that y(y' and yeZ , forces yuy'- I
After assigning

y := - ,

the remaining goal Is

assert A[z]:A[y+i.], y+isz5J
achieve A[z]SA[y*y], ySz<J varying z

Since the value of y has changed, we have broken the protected clause into an assertion
that the conjuncts held for the previous value of y and z and a gel to reachieve them
for y- I . The assignment to y Is protected by only varying z In this goal.

Part of the above goal has already been achieved and part remains to be achieved.
Using the following basic fact about universal quantifiaction:

I - fact P[U:V] when P[u:W], P[W+i:], us ;w;

we can break the conjunct A[z]<A[y.1] into two parts:

purpose Alx]SA[yfl, yz~J
achieve A[z]SAy:w], A[z]SA[wvl.1], ySaSJ, ,;z ;j varying z,

assert A[z]SA[yf], ysz;J

. 1b Jl I I
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Since we have already asserted A[z']SAjy.I+j] and y9, lz'SJ, we may achieve
A[z]5A(w. Ij], y:w<J , and ySzSJ by leaving z unchanged and letting w-y. We are left

with only

achieve A[z]SA y]

This latest goal has an empty variable list; It can unly be achieved by proving that it
is true or testing that It is true. Since it cannot be proved true, we use the conditional rule
to generate

if A[z]SA(y] then
else assert A[z] A[,.+ij], y lzSj, A[y]<A[z]

achieve A[z]sA[:w], A[z]A(aiv+ lj], vSawj,
y<z~j varyitng z. w

The then-clause is empty, since A[z];A(y] holds at that point by virtue of the test; when
*. the conditional test Is false, we may use that fact, along with the fact that the invariants

held for the prior value of y to achieve the previous goal. We know, then, that
Ay]<A[z']<AL7I.1], so to achieve A[z]:;A[w+i 1] we let z-y-w. Substituting for z and
wo , we have

achieve z-y-w, A[JSA( :,3, A[]<A[y.I.j], yS<y J varying zw.

Since A[z]<A~y+.j] and yISJ have already been asserted, this reduces to Just

achieve x=y varyiag z

Achieving this via an assignment statement, we obtain the conditional

if A[z]%A[y] then else z := i t

or simply

if A[y]<A[z] then z :a y fn

We have derived this program for minimum:

1I
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Pt: begin comment array mivamum-pw s progr am

assert 1,j6, isJ
(z,Y) :- (jj)
loop assert A[z]<SA(.J], yCZ, i<y;zqj

until y-l
Y :- Y-i

If A[.]<A[z] then z :- y fi
repeat

assert A[z]JA[1.1], iSzSJ
end.

I ,__ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _I

In the next section, we shall see how to extend this program to achieve the added relation
x-A[z].

Example 3: Parition.

In this last synthesis example, we consider the Partition problem: given an array
segment A[t:J], rearrange its elements so that there exists some position g which

* partitions the segment into two ordered parts. In other words, each element of the left
part A[l:g] Is to be less than or equal to each element of the right part A[g+ I ]. The
goal specification may be expressed as

P,: begin comment artiion program
assert L,Jed, i<J I
achieve A[i:]sA[g+IJ], Lt, p l:J. beg(A(j]).b(,'[L:j])varing A, g

end,

where A' represents the prior value of the array A. The function bag(A[u:v]) yields the
multiset (A[u], A[u+ I], . . . , A[v]) ; thus, the fourth conjunct of the goal Implies that the
new array segment must be a permutation of the original segment. We Illustrate two

* Ipossible solutions.
|o .

1
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I. Firsit Sludox

As a first try, we strengthen the goal specification using the

fact p[u:u] when p(u)

to eliminate the quantifier [L:g]. What we wish, then, is to

achieve A[i]SA[.+g.J], gaL, bag(A[i*J])-ag(A'.J]) varying A,g

(the subgoals £4g and g+<lJ were deleted since they follow from the new goal gui and
the assertion L(J .) The subgoal g-1 can be achieved by the assignment

g:= ,

leaving only

achieve AiJ:A[i.J], Mg(A~i.J)-bag(A'[i'J]) varying A

f. We have already seen how to synthesize a program to find the position of a minimal
element of an array; so we know how to

achieve A[z]_A[i.i]J, .i+:SJ varying z

This, along with the transitivity of inequality,

fact u~v when usw, wS ,

suggest strengthening the above goal to

achieve A(i]<w, :SA[i+i.L], bkg(A[LJ])-bag(A'[(ij]) varyin' 4, w,

where the new program variable w can be set to any convenient value. Comparing what
we have with what we want suggests letting w=A[z] and splitting the goal into the
disjoint goals

achieve A[x]SA[i+l.J], Lilz<J, bag(A[i'J])mbag(A'[iJ]) varying z
achieve A(i]<A[z] protecting A[zJ]A[i+I.J], lsl~zxJ,

baf(A[i:J])-bag(A'[(ij]) varying A

The permutation requirement in the first goal is satisfied, since that goal does not vary A,
i.e. A'=A ; the rest is achieved by the old minimum program. To achieve the second goal
A[i]LJA[z] , one might try to assign A[z]:=A[i] , but that would not protect the permutation

requirement. We can however test if A[]A[z] already holds:

if A[]A[z] then
else assert A[z]<A[i]

achieve A[I]SA[z] protecting ... varying A
fi

.1
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Knowing, for the else-branch, that A'[z]IA'[l] suggests achieving A[i]<A[z] by letting
A'[z]uA[i] and A'[i]kA[z]. Since IgzJ, this also protects the permutation requirement
bq(A[J])-bag(A'[J]). We have

it A[l]:SA[z] then
els (41],A[z]) :- (AzJA41])
fi

Accordingly, our first solution Is

j P,: begin comment first partition program

assert 1,JEN, i<J

S (z, ) :- (j,J)

* J' loop assert A[z]<A[yj], yzSj
until Y=l+i

I y :=y-l-I

I if A[y](A[z] then z :" , fi
Irepeat
I if A[z]<A[i] then (A[i],A[z]) (A[z],A[i]) ft

assert A[L:g]SA[g+l'jJ], isg, g+l<J, bag(A[i j->bag(A'[ij] )

I en'.

This program leaves something to be desired. Despite the fact that it satisfies the
stated specifications and that It Is not inefficient, the fact that for the usual applications of
Partition It is desirable that g be closer to the mean of i and j went unspecified. The
above program always results in g being equal to I.

2. Second Solution

We do not want, then, to force goi. Instead, we leave g variable and reconsider

our original goal (temporarily leaving out the permutation requirement)

achieve A[i:g]<A[+1.:j], 1S4, g#ISJ varying A,g

This time, we first strengthen the goal by Introducing a new variable A to replace the
, expression g.I

achieve A[i:g]<A[:J], gi.kl, 1Sg, A J varying A,g,.

lb - - . - - - '.. - .



116

Then we try to eliminate the double quantifier in A[i:gJ A[hJ] by introducing a new
variable w , using the

fact USv when uSw, w~V

This yields

achieve A[i:g]<5w, w<A[h.], g+luA, ikg, h<J varying A,g,h,zu

There are now four variables that the program may set: A, g, A, and w.

Now we can split this conjunctive goal into two:

achieve A[i:g]<w, wSA[khJ], i~g, hSJ varying A, g, h, w
achieve g.i=A protecting A[i:g]<a', w<5A[.j], i~g, hSJ

varying A,g,h,w

the second will become a loop with exit test g+l-h and the first will Initialize the
Invarlants. By reducing quantifiers to single elements, the first goal may be strengthened
to

achieve A[i]<w, rSAUJ], ri, h.J varying Agha'

and the first conjunct may be further strengthened to A[i]=w

achieve A[i]-W, w<SAU], g=i, h=J varying A,g,A,w.

At this point, we would like to assign to w, g, and A. Before we can do that we must

substitute for the other occurrence of v'

achieve Ai]=w, A(LJAQ], gui, haj varying A, g, Aw

Splitting this Into two disjoint goals and assigning we get (putting the permutation
requirement back in):

achieve A[iJ<AUJ], bag(A[i.j])-bag(A'[i.J]) varying A
(g, A, w) :a (Q, A[J]) .

As In the first solution, the remaining subgoal yields the conditional

if A[])Aj] then (A[i], AU]) :a (AU], A[i]) ti

The current status of the program Is:

. -
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assert i,JeN, i<J
if A[iJ>AU] then (A[i),AUJ) :(AU],A[i)) fi
(g,A,w) :- (i,j,A[i])
assert w=A[i], A[i]SA], 4, hlJ
loop assert A[i:g]<w, wSA[h:J], i<g, hSJ

until g+l=h
approach g+l=h protecting A[i:g]<w, w<A[h.J], i~g, h<J

varying A, g, h,
repeat

We may now determine bounds for g and h and apply the termination rule. Initially

g0=i<J=h0, while upon termination iSg*+i= 5h* J . This suggests keeping g. eZ and letting

g Increase from I to its final value g*, while h decreases from j to A* . The

resulting bounds, LgSg* and h*:5h_<J, combined with g*=Ah-|<h* implies the invariant

g(h. So to ensure termination, we require that g and h remain integers, and that

progress is made by increasing g and/or decreasing h , until they meet somewhere in the

middle. Accordingly, the loop-body subgoal becomes

achieve g'<g, h'>h, g'<gVh'>h
protecting A[i:g]<w, w<_A[hA], g, heZ. Lg<h<j varying A, g, h, w

Splitting the two quantifiers into the range that has already been achieved and the
range that remains to be achieved, we get

achieve g'<g, h'>h, g'(gVh')h, A[g'+I:g]<S., tSA[h:h'-l]

protecting A[L:g]_sw, w<A[hj], g, hcZ, i:5g<h<J varying A. g. h. w

We shall protect A[i:g]<w and woSA[A'J] by not varying w or any of the elements in the

array segments A[i:g] and A[h.J]. Now If we reduce the quantifier [g'+i:g] to a single

element (letting g'+l=g ) and make the quantifier [:A'-1] vacuosly true (insisting that

hAW'-I ), then we get

achieve g'Sg, h'>h, g'(gVh')k, A[g'+]i;Sw, '+4I-g. h>h'-l,

protecting A[L:g]w , wA[h:j], g. eZ, i9g(h<J varying A, g. A

which simplifies to

I. achieve g'. lug, h'lh, A[ '.l]Sw
protecting A[i: ]Sw, wsA[A.h] varying A, g, A

The conditio al rule suggests achieving the conjunct A[+ i]S: by testing:

'I k
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if A[g+ I]<w then g :z gi
else assert w<A1g]

achieve g'sg, h'tA, g'(gVh')h, A[g'+i:g]<_w,
w:A[A:'-i] protecting . . . varying g. h

fi

Without going Into more detail, the remaining subgoal generates two more cases: if
w<SA[h'-I] , then h Is decremented by I ; otherwise, A[h'-i](w(A[g'+I] and A[h'-I] is

exchanged with A[g' I] and both g is Increased and A decreased. The completed
program Is:

P,': begin comment partition program

assert ijew, L<J
if A[i])A[U] then (A[i], AU]) :- (AU], A[i]) fi

I (g, h, w) := (l,J,A[i])

loop assert A[l:g]J SA[hkj], g. hEZ, Sg</hSj
until g+i=h
if A[g+I]Sw then g :x g+i

else if w:<A[h-I]
then h :a k-i
else (g,h) :- (g+1,h-1)

(A[g], A[A]) := (A[h]. A[g])
ti

fi

repeat
assert A[i:g]SA[gl*.J3, Lg, g. <J
end.

a.
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6. EXTENSION

In this section, we Illustrate techniques for extending a given program to achieve an
additional relation. There are two basic methods. One is to append code at the end of the
program with the purpose of achieving the additional goal, while making sure that the
relations already achieved by the program remain Intact. The second method Is to achieve
the added relation at the outset and modify the program to ensure that it maintains that
relation true until the end of the execution.

This second method is also used for local optimization: if a program contains an
expression that is relatively difficult to compute, but must be recomputed for each loop
Iteration, then it may be possible to introduce a program variable that will Invariantly
contain the value of the complex expression, and for which there is a relatively simple way
of deriving the new value of the variable from the old value. This new variable must be
updated whenever the value of a variable in the expression is changed, and may be
substituted for that expression wherever it occurs in the program text.

Example 1: Array Minimum.

Consider our program

J P,: begin comment array minimum-position program

assert i,JeN, ij I
J (z,y) := (J)

loop assert A[z]<A[)*J]. ySzsj
until Y=iL

J y :- Y-I

I it A[<](A(z] then z : t
I repeat

assert A[z]SA[i:J], iSzfj
S end •

I ..

and assume that we wish instead toI.
achieve A[z]SA[i.], iSzSJ, x A[z] varying z, x

The above program only achieves the first two conjuncts of the new goal; we must extend
• • the program to achieve the additional conjunct x-A[z] as well.

1b
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One simple way to accomplish this would be to split the new goal into two disjoint
goals:

achieve A[z]5A[j], i:z:J varying
achieve x:A[z] varying r.

For the first, we already have a program; for the second, we may simply append the

assignment

x :- A(z]

A second possibility would be to begin by achieving the relation x=Alz], and then
protect that relation while achieving A[z]SA[i.J] via P,. In other words the relation

x-A[z] should be a global invariant of P,, holding throughout execution of the program.

in order to accomplish this goal, viz.

achieve x-A[z] in P, varying x

we must set x to the appropriate value whenever the variable z changes value. The

assignments to z are

Z:*j Z:- .

When z is initialized to J, we initialize x-A[z] to AJ] ; when z is reset to , we reset

x to A[y]. This yields the program

(z, y. x) :- Q,J, AV])
loop assert A[z]<Ab j], ySzSJ

until yl
:= -

if A[,]<A[z] then (z, x) :a (, A[y]) fi
repeat

As It stands now, the first alternative requires less computation. But since we have

established the global invariant x=A[z], the conditional test Ary](A[z] may be simplified
to. AL](x. The final version of this program is

I.

- . -
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assert x-A[z] in

Pt': begin comment extmendd array-minimum program

assert i,JEN, L<J I
(z.Y.X) :- (,J,AU]) I
loop assert A[zJSA(7:]. ySzSJ I

I until y-1
I :u Y-I I
I if Aby]<x then (z, x) :- (y, Ay]) ft
I repeat

assert A[z]SA,[i.], iSzlj
end. I

I __________________ I

In a similar manner, we could begin with the program

P.": begin comment twendd array-minimu m program

assert i,jeN, iSj

(y, x) :- (J, AUJ])
loop "srt x:<A[,i]

until Y:L
I y:-y-I , I

if A[y](x then x :-Ay] ti
repeat

assert xsA[ij]
end

that only achieves xSA[i.l, and extend it to achieve x=A[z] as well. There is no easy
way to set z at the end of Pt" so that x=A[z]. But we can

achieve x=A[z] in P," varying z

by examining the assignments to x,

x := AJ] x :a ] .
I. The corresponding assignments to r would be

yien : J z : a,

• ,yielding the same program aU P,'

11



Example ZS Integer Square-root.

In our program,

P,': begin comment integer square-root program I
assert a I
S :- 0
loop assert z2 .a. zSe I

I until a<(zi) 2  I
2 :- z+1

I repeat I
assert zL J I
end, I

i I

the exit test a((z+ 1)2 is relatively difficult to compute as it Involves squaring. It may be

replaced by a(s , if we can extend P, to achieve the global Invariant s=(z+1)2

achieve sa(z+l) 2 in P, pvrying s

The variable z is set by two assignments In the program

z :. 0 z := Z+I ;

we must assign appropriate values to s to maintain the desired relation s=(z+ 1)2.

One way to accomplish this is to use a collection of rules that relate assignment
statements to the values of the program variables. One of them states that in order for a

global assertion of the form

assert (y-b,)'2.a 2 u(x-a)[b,.(x-ao-a,).2.,a.(b,.b,.a,)] in P

holds If the assignments to x and . in P are of one of the two forms

or

where a ., bI at , b, , and b2 are of constant value in P.

Let us try to apply this rule to the problem at hand. We match x and i in the rule
with z and s in the program, respectively. The assignments to z are

2 :M 0 2 :2 z+ I
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so we let so * 0 and a . I Thus, assignments of the form

(z,S) :- (0, b0) (zs) :- (zI, s+b,.+4b,)

achieve the relation

(s-b0).2. I2-(z-0).(b,.(z-0~- i )*2. I .(b,.b,.0)]

I.e.

(s-b 0).2-z.[b,.(z- I ) 2.b2].

So we are looking for instantlatlons of b0 , b,, and b., such that

(s-bo.2=z.b,.(zI) 2.+.] + 1z~)2

Isolating s to the left of the equality and matching, leaves

I.z.[b,.(z- 1)12+b,+]+b o, .0 (z+ 1)2 .

Transforming (z+ )2 Into z.(z*2)+l , suggests b0 n I and

,'U-0)124, =* z+2 ,

which, in turn, suggests b, =* 2 and b, %* 3. Instantiating b,, b, and b, back into the

* assignments, we get

(z, s) := (0, I) (z,s) := (z.s+2.z+S)

A further Improvement would be to

achieve t=2.z+3 in P,

By another rule (() in the appendix), to get

assert a,.(y-b0)=b,.(x-a,) in P

the proper assignments are

(x,Y) := (0, b0) (xY) := (X+%.u,y+b,..)

This suggests the Instantiation

(x+ " , Z Y 1, a, ,- 0. al l,u.I)

leaving

(f-b)=b,z . z.3

1b
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Taking bo .o 3 and b, ,. 2, we get the assignment&

(z, s t) :- (0, 1, 3) (z,s,t) :. (zI, s~t,u.2)

and the program

assert s-(z.i)2 , t=2.z+3 in

P,": begin comment famous integer square-root program
assert aeN
(z's, t) := (0, 1. 3)

loop assert z2Sa, zeN
until as
(z,s,t) :- (z. I,ss+t,t.2)

repeat

assert zzLaJ
end.

Example 3: Binary Integer Square-root.

At the conclusion of the overview chapter, we had obtained the following binary

integer square-root program:

assert aeN, zeW, ye2N in
P,: begin comment Unary integer square-root program

assert aeN
J (ZyD :- (0, 1)

loop until a<y2

I repeat

* loop assert zs/i, -.fa<zy

Iuntil yst

I if (z2+y)Sa then z :a ty ti

, repeat

assert zsv'i, v4(z+I, zaN
iN- . , end.I N ,

1b-~ . ..
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In this program, the exit test a(y2 and conditional test (zy)2Sa are the most expensive

expressions to compute. The latter is equivalent to z2.2.yz.y 2sa , and assuming that we
can

achieve u=z 2 , v=2.,.z, w=l In P, varying u, v, .

we may replace the tests with a<w and u~v+wa , respectively.

Whenever z or y Is updated, the new variables u, v, and w must be updated

correspondingly so that their relations with z and y remain invariant. In a manner similar
to the previous example, we obtain

assert aei, zCN, ye2 N , u v=2.y.z, w=92 in I
P,: begin comment extended binary integer square-root program

assert aeN

t.(z, y, u, Vw) := (0,1,0,0,1)
loop until a<w

(y, w) :- (2.y, 4.w)
repeat

loop assert z<5/4, /a1(zy

until y_ I

(y, v, w) := (y/2,/2,2, w/4)
if u~v~w:a then (z, u, v) := (z~y, uv.w, v2.w) fi

repeat

assert z<5/, 1/iaz.l, zeN

end .

The variable z affects only the value of z Itself, so it is a candidate for elimination

from the program. The only problem is that it is z that contains the desired final result.

Fortunately, since we have the global invariant 0=27.z , we can just append the goal

achieve v=2.y.z varying z

to the end of the program. We shall return to this tvachieved goal later.

Once we have eliminated the assignment z:=z y, the variable y only affects the the

exit test y: I . But we can replace the varible y with Nw, since w-y2 and y is known
to be positive. This gives us the exit clause

until 4s1

for which the primitive
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until WS l

may be substituted.

Squeezing the last drop of ink out of this example, we obtain yet another slight

improvement: To transform the test u++.w .a * u.uv+)O , we can apply the transformation

u a* u+a , yielding the initialization

(u, u. w) :- (-.,O, i)

and conditional

if u v~w$O then (, ) :- (u~v+., v*2.w) fi

To avoid recomputing the expression u~v+*a for both the conditional test uv.+w<a and
the assignment u:=u+uv~a , a temporary variable could be generated, say t, such that

t-u+v+w . it would then be used in the test tSO and assignment (u, v):-(t. v42.w).

Incorporating the above improvements, we obtain

assert aeiJ, zeI, ye2N, - . =27.z, W.-2 in
P,': begin comment optimized inlteger sJrTe-Toot program

assert aGeb
(uv.w) :- (-a,O.i)
loop untl a(zW

w :- 4"-w

repeat
loop assert zsv'i, -fa.(z.I

until v:5I
0, ws) := (12, w4)
I := U+v+Wi

if t:O then (u, v) :0 (t. v.2.w) fi
repeat

achieve v-27.z varying z
assert zSrgv, -/-(z i, zeN
end .

The variables z and y have been left in the assertions though they t.Fve been eliminated
from the program text; at any point in which these "ghost" variables are undefined by the
program, the intent of the assertions is that there exist values for z and , such that the
assertions hold.

?b
*
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Finally, another drop of computation is saved by

achieve suvw varying s

Since v-0 upon entering the second loop, we set s:=w at that point. When v is halved
and w Is quartered, the new value of s should become v/2.w/4=u12.w/2-w/4=s/2-w14.
So as not to compute w/4 twice, we may first assign w:=w/4 and then s:=s12-w . When
u is incremented by 2-w , so must j be. We can now eliminate v from the program. For
the second loop, we have

s := UP
loop assert z!v/i, ,f-(z+y

until w5 I
W :- W/4
s :a s/2-w
I :W U+$
if tSO then (u,s) := (t,s2.) fi
repeat

We still have the goal

achieve v=2.y-z varying z

Though y and v are now ghost variables, we know that s=zvw, my2 , and ye 2
N . From

these global Invariants and the exit test w5 I, we conclude that w=y=I upon terinination
of the second loop. Thus, to achieve the above goal, we need only

achieve s-1=2.1.z varying z

we therefore assign

za := (s-I)12

The transformation vn w'12 gives us our final version of this program (cf. Dijkstra
1b19?O11:

V

I $

.. **

"-
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assert aei, zeN, y 2e, ua-z2. v-2,y.z, w.-2. 2, s=uvwl2 In
P;": begin comment improwed integer square-root program

assert aeW
(u,w) :- (-a,2)
loop until 2.a(w

w : 4"w

repeat

s := w/2
loop assert zs-A, fa-'(z+y

until w:52

w :=w14

sI: (-0)/2

t zs~s
if t<O then (u,s) := (t,s+w) fti

repeat

:(s- i)/2

assert /i. /a-(z+i, zeI

end .

We have successfully replaced the original exit test a<Y and conditional test

(z+y)2.a , both of which Involve squaring, a relatively expensive operation, with the simple

tests 2a(w and t:9O. This, at the cost of updating the variables by addition/subtraction

and multiplication/division by powers of two, relatively cheap operations on binary

computers.

The real square-root program

I I
begin comment real square-root program I

assert OSa<I, O<e

I ] (z,Y) :- (0, i) I
* loop assert z<*ia, ra<z+.y

.I tnil ,
I :- y/2 I

if (z .)2Sa then z :'. ti I
repeat I

assert xsvra, Aa~z~eI
endI
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'may be optimized In a similar manner to obtain Wensley's (1969] square-root algorithm:

assert a+4.u.y=z 2 in

begin comment optimized real square-root program
assert Oa<i, O<e

(z,y, u) := (0, 1/2, -a/2)
loop assert z~s'/, 4 (z.2.y

until y-2.e

I (y. u) :; (y/2, 2.u)
t := U+Z+y

if t<0 then (z, u) (z+2.Y. t) fi

repeat

assert z_.4i, */i(z+e

end.
L!

In this chapter, we have seen how to systematically develop a program from Its
specifications; In the next chapter we shall see how similar Ideas may be employed to
generate the invarlants from the code.

k

I.

V.

--- - - - - - - - - - - - - .- . .
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1. INTRODUCTION

As we have seen, invariant assertions are often needed for modifications to carry
through. But what if the programmer failed to supply enough of them? In particular, if the
program is incorrect with respect to its specifications, then, perforce, some of the given
assertions (at very least, the output specification) do not reflect what the program is
actually doing. And without knowing what the program is doing, we cannot proceed to
debug it.

Program annotation Is the process of discovering Invariant assertions from the program
text itself. Our task Is to generate the invariants describing the workings of the program
as is, independent of its correctness or incorrectness. The process is iterative, since
finding some invariants suggests others. Assertions supplied ay the programmer cannot be
assumed true, though they may be used to guide the search for correct invariants.

If the invarlants associated with the point of termination of a program imply that tile
given output specification is true for any input satisfying the input specification, then the
program has been proved correct. On the other hand, If there exist legal input values such
that whenever the output invariants hold for those Input values, the specifications do not
all hold, then the program Is incorrect. In this manner, Invariants are used for proving
correctness/incorrectness of programs.

Existing implementations of the invariant-assertion method of program verification are
not fully mechanical; the user must supply most, if not all, of the invariants himself. If the
original program is not supplied with sufficient Invariants to prove correctness or
incorrectness, they must be supplemented. These Invariants then enable one to verify if
what the program does is what It was Intended to do. Invariants are also useful in
analyzing other properties of programs, e.g. time complexity.

In the following sections, we present a unified approach to program annotation, using
annotation rules - in the style of Hoare [1969] - to derive Invariants. Section 2 is an
overview. It Is followed by two detailed examples: the first illustrates the basic
techniques on a single-loop program; the second applies the techniques to a program with
neeted loops and arrays.

Three earlier annotation systems are:
, the system described in Elspas [1974], based mainly upon the solution of difference
equations;
0 VISTA (German [1974], German and Wegbrelt (1976]), based upon the top-down
heuristics of Wegbreit [1974]; and
, ADI (Tamir [1976]), an interactive system based upon the methods of Katz and Manna
[1976] and Katz [ 1976].

'I

- .- -I
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Our annotation system, as described here, attempts to incorporate and expand upon those
systems. Recently, Suzuki and Ishihata [1977] and German [1978] have implemented

systems that generate Invariants useful In checking for various runtime errors.

2. OVERVIEW

In this section, we first define some terminology and then present samples of each

type of annotation rule.

I. Notation and Terminology

Given a program with its specifications, our goal Is to document the program
automatically with invariants. If the program is correct with respect to the specifications,

we would like the invariants to provide sufficient information to demonstrate its
correctness; If the program is incorrect, we would like information helpful in determining
what Is wrong with it.

We shall be dealing with three types of assertions:

* Global invariants are relations that hold at all places (i.e. labels) and at all times during

the execution of some program segment. We write

assert a in P

to indicate that the relation a is a global invariant in a program segment P . (Actually,

a Is considered a global invariant even if It only begins to hold once the variables in a

have been assigned an initial value within P .)

0 Local Lnvariants are associated with specific points in the program, and hold for the
current values of the variables whenever control passes through the corresponding point.

Thus,

L: assert a

means that the relation a holds each time control Is at label L

* Candidate assertions, also associated with specific points, are relations hypothesized to

be local invariants, but that have not yet been verified. We write

L: suggest a

Consider the following simple program, meant to compute the quotient q and
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remainder r of the Integer input values c and d:

PO: begin comment LIntsgir-dhislon program

B0: assert ceW, deNWi
(q, r) :- (O,c)
loop L.: assert .

I until r(d
(q,r) := (qelr-d)
repeat

E 0 : suggest qscld, cld(q+l, qeZ, ruc-qpd
end ,

p

where N is the set of nonnegative Integers, W+1 IIs the set of positive Integers, and Z
Is the set of all integers. This program will be used only to illustrate various aspects of
program annotation; complete examples of annotation are given In the next section.

The invariant

assert cei, dfW.4!

attached to the begin-label BO Is the input specification of the program defining the
class of "legal" inputs. The input specification is assumed to hold, regardless of whether
the program is correct or not.

The candidate

suggest q~c/d, cld(q+l, qEZ, r-c-q.d

attached to the end-label E, is the output specification of the program. It states that
the desired outcome of the program Is that q be the largest integer not larger than cid
and r be the remainder. Since one cannot assume that the programmer has not erred,
Initially all programmer-supplied assertions - including the program's output specification -
are only candidates for invariants.

In order to verify that a candidate is indeed a local invariant, we must show that
whenever control reaches the corresponding point, the candidate holds. Suppose that we

|* are given a candidate for a loop Invariant

L,,: suggest ruc-q.d .

To prove that it Is an Invariant, one must show: 1) that the relation holds at L,, when the
loop Is first entered, and 2) that once It holds at L0 , It remains true each subsequent time

I -.. control returns to Lo . If we succeed, then we would write

* I 
*-
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L.: assert r-c-q-.

Furthermore, If r=c-q.d holds whenever control Is at L,, then it will also hold whenever

control leaves the loop and reaches E,. In other words, r-c-q.d would also be an

invariant at E. and may be removed from the list of candidates at E'. In that case, we

would write

EO: assert r=c-q.d and suggest qsc/d, cld(q. 1, qeZ

Global invariants often express the range of variables. For example, since the
variable q is first Initialized to 0 and then repeatedly incremented by 1, it is obvious that
the value of q is always a nonnegative Integer. Thus we have the global invariant

assert qeW in P0

that relates to the program as a whole and states that quiN throughout execution of the
program segment P0.

In this chapter, we describe various annotation techniques. These techniques are

expressed as rules: the antecedents of each rule are usually annotated program segments
containing invariants or candidate invariants and the consequent is either an Invariant or a
candidate. This list is representative of the kinds of rules that may be used for
annotation; it Is not, however, meant to be a complete list. Not only are these rules useful
for automatic or interactive annotation, but they help to clarify the interrelation between
program text and-invariants for the programmer.

We differentiate between three types of rules: assignment rules, control rules, and

heuristic rules.

* Assignment rules yield global Invariants based only upon the assignment statements of

the program.

" Control rules yield local Invariants based upon the control structure of the program.

* Heuristic rules have candidates as their consequents. These candidates, though
promising, are not guaranteed to be Invariants.

The assignment and control rules are algorithmic In the sense that they derive relations in

such a manner as to guarantee that they are Invariants. The heuristics are rules of plausible

inference, reflecting common programming practice.

1*"',
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2. Assignment Rules

Many of the algorithmic rules depend only upon the assignment statements of the
program and not upon its control structure. In other words, whether the assignments
appear within an iterative or recursive loop or on some branch of a conditional statement is
irrelevant. Since the location and order In which assignments are executed does not
affect the validity of the rules, these rules yield global invariants.

The various assignment rules relate to particular operators occurring in the assignment
statements of the program. Some of the rules for addition, for example, are: an addition
rule that gives the range of a variable that is updated by adding (or subtracting) a
constant; a set-addition rule for the case where the variable is added to another variable
whose range is already known; and an addtion-relation rule that relates two variables that
are always incremented by similar expressions. Corresponding rules apply to other
operators.

For example, the addition rule is

x := a 0 x :x. 1  x ::x +at . . . in P

assert xEa.a,4.a+0 .. . in P

where P is a program segment and the expressions a, are of constant value within P
The antecedent

x ;:- a. x := x.a x := x~a, . . Il P

Indicates that the only assignments to the variable x in P are x:=a, , x::x+a, x:=x+a.,

etc. The consequent

assert xEa 0,+a, .aO4. ... In P

is a global Invariant Indicating that x belongs to the set a*a,.N+4a.We . .N throughout

execution of P - but only from the point when x first receives a defined value in P via
the assignment x:-a 0 . (After any execution of x:-a, , clearly xea0.a,.N'a..N+ . . . with

Vx4a0.a1.O+a.O . . . , and If xxaoa4,*m.at.n.... for some M , n, ... before

executing x:zx+a,, then x-aoa.(m~l).at. . . . after executing the assignment. Thus,
im represents the number of executions of x:=x+a| since x:=wa was executed last, n is

the number of executions of x:,x+a,, etc.) From such an Invariant, more specific
properties may be derived. For example a bound on x may be derived using methods of

- ..... .
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interml arithmetic (see for example Gibb [101]). Note that no restrictions are placed on
the order In which the assignments to x are executed, except that prior to the first
execution of x:-a, the Invariant may not hold.

In our simple program P,. the assignments to the variable q are

q:-O q:uq I

So we can apply the addition rule, Instantiating a, with 0 and a, with I , and obtain the

global Invariant qeO+. I W , i.e.

assert qw in P•

The assignments to r in PC are

Y:=c r:ur-d .

Applying the same rule to them, letting a0-c and au--d, yields the invariant

assert rec-dN in PC

Given that d Is positive, we may conclude that r5..

The set-addition rule is a more general form of the above addition rule. applicable to
nondeterministic assignments of the form x:cf(S), where an arbitrary element in the set
f(S)=(f(s):sES} is assigned to x. Note that an assignment x:=f(s), where it is only
known that seS , may be viewed as the nondeterministic assignment ;:ef(S) . The
set-addition rule is

x:ESO x:ex+Sa x:X+S2 .. . in P

assert xeSCSzS,+.S,.. . In P ,

where ES denotes the set of finite sums s$4s,, . .. for (not necessarily distinct)
addends s, In S . if m=0, the sum is 0; If S contains the single element s , then

,S=u.N . (This rule applies analogously to any associative and commutative operator 1*".)
These assignment rules for global invariants are related to the weak interpretation method
of Sintzoff [1972] (see also Wegbreit [1976], Wegbreit and $pitzen [1976], and Harrison
(1977]) that has been Implemented by Scherlis [1974] and German and Wegbreit [1976].

1.
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In program P. the assignments to r were

r:UC r:,r-d

Since we are given that ceJ and duN+ I, we may view these as the nondeterministic

assignments

r:E$I r:er-(N+JI)

and by applying the set-addition rule we obtain the global Invariant reH-E(N4+I) . This

simplifies to

assert rcZ in P0

where Z Is the set of all integers.

To relate different variables appearing In a program, we have an addition -relation rule:

(x,Y) := (aob') (x,.) :- (x+a,.uY4,.u)

(x,Y) :- (x+a,.v,y+b,.v) ... In P

assert ao-(y-b 0)b 1.(r-a 0) in P,

where u, v, ... , are arbitrary (not necessarily constant) expressions. The invariant

begins to hold only when the multiple assignment (x,y):=(ao, b) has been executed for the

first time. (The Invariant a,.(yb 0)=b1,(r-a 0) clearly holds when x=a, and yb, . Assuming it

holds before executing (x,y):=(x+a,ou,y+b,.u), then after executing the assignment. both

sides of the equality are increased by a,.b,.u, and the invariant still holds.) The multiple

assignments In the antecedent of such rules, e.g. (x.y):=(x+a.uy+b,.-u), may represent

the cumulative effect of individual assignments lying on a path between two labels, with

the understanding that whenever x:=x+a,.u Is executed, so Is y:=y+b,.u for the same

value of the expression u . In that case, the Invariant will not, in general, hold between

the Individual assignments.

In our example, the assignments In the initialization path give us

" (q,r):=(O, c),

| • and for the loop-body path we have

(q, r):-(q+I, r-d).

By a simple application of the addition-relation rule with aoO, bo. c, a4=u-=v I , and bl--d,

we derive the invariant I.(r-c),-d.(q-O) , which simplifies to

, dafor the- lopbd pat we have..........
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assert r-c-q.d In PC

Note that this addition-relation rule (as well as several other relation rules) may be
derived from the following general relation-rule schema:

(x,,) :- (a0,,b) (x,y) :- .~ e,) ~W)

(x, ) := (xo(zea,),O(Vb')) . . . in P

assert (apb,)S(ya,).(b0a,)O(xW,) in P"

where the operator 0 Is commutative and associative, operator 0 satisfies
(ab)Oc=(ac)@b , and (a*b)OGc(ac)*(bc). The various relation rules are related to

optimization and extension techniques, where the desired relation Is given along with the
assignments to one of the variables, and the proper assignment to the other variable is
sought (as in the previous chapter). For related approaches see Caplain [1975] and
German (1978].

S. Control Rudes

Unlike the previous rules that completely Ignore the control structure of the program,
control rules derive Important Invariants from the program structure; they are directly
related to the verification rules of Hoare (1969]. There are, for example, two rules to
push Invariants forward In a loop. The forward lop-Mt rule,

loop P'
assert a
until 9
L':
pit
repeat

L":

L': assert a, -,t
L": assert a, t

reflects the fact that if execution of a loap terminates at L", then the exit test t must
have just held, while If the loop Is continued at L' , the exit test was false. Furthermore,
any relation a that held just prior to the test, also holds immediately after. The forward

loop-body rute,

1b1
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assert a
loop L:

P
assert 0
repeat

L: assert aV0

states that for control to be at the head of a loop, at L, either the loop has just been
entered, or the loop body has been executed and the loop is being repeated. Therefore
the disjunction aV0 of an Invariant a known to hold just before the loop and an Invariant
0 known to hold at the end of the loop body must hold at L.

Applying the first rule to the loop in the Integer-division program P,, yields the

invariant r<d at E. and rad at the head of the loop body:

(q,r) := (O,c)
loop LO:

until r(d
assert r2d
(q,r) := (q~i.r-d)
repeat

E.: assert r<d

To propagate Invariants, such as r2, past assignment statements, we have a
forward £ .signment rule,

assert a(x,y)
x :-f(x,y)
L:

L: assert a('(x,,),,)

where f- Is the inverse (assuming that there Is an inverse) of the function f In the first

argument, i.e. f(f(x, ),y)ux. By using the Inverse function f, the value of x prior to

the assignment may be expressed In terms of the current value of x as f-(x, ). Thus, if
the relation a(x,y) held before the assignment to x, then after the assignment

a(r(x, ), ) holds. Even If there Is no inverse function, variants of this rule may often be
used to glean some useful Information.

1*..

-*---
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In our example, since the first loop-body assignment 1:=q. I does not affect any
variable appearing in the invariant red, the invariant is pushed forward unchanged. To
propagate rkd past the second assignment, r:-r-d, we replace r by the inverse of
r-d, that is r+d, yielding r+.dU, or

assert r>O

at the end of the loop body.

We have an usignmtet axion

X :0 6

assert Xna

where the expression a must remain constant during execution of the assignment; in
other words, it may not contain x. This axiom gives us the Invariant

. assert r=c

prior to entering the loop. Thus, by the second rule for loops, the forward loop-body, we get
the loop invariant

L.: assert r=cVr>O

Since, by the Input specification OSc, the first disjunct implies the second, this Invariant
simplifies to

L.: assert r>O

To generate nvariants from a conditional test, we have a forward test rule:

assert a
If t then L':

P?
else Lo:

P"

fi
L': assert a, t
L": assert a, -'i

That is, for the then-branch to be taken t must be true, while for the else-branch to be
taken it must be false; furthermore, any a that held before the test, also holds after.
Once invariants have been generated for the two branches, they are pushed forward by
the forward branch rule:

t
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If f then P'
assert a

else P1

L: assert aVss

It states that for control to be at the point after the conditional statement, one of the two
branches must have been traversed.

The following forall rule Is valuable for programs with universally-quantified output
specification. Given a loop invariant a(x) at L containing the integer variable (or
expression) x and no other variables, check If x is monotonically Increasing by one. if it
Is, then we have as a loop Invariant at L that a still holds for all intermediate values
lying between the Initial and current values. That Is

assert x=a, xcZ
loop L: assert a(x)

P
assert x=xL+I
repeat

L: assert (V'eZ)(a<t<x)a(D')

where a is an Integer expression with a constant value in P and xL is the value of x
when last at L . (This rule Is similar to the universal-quantification technique for arrays in
Katz and Manna [1973].) The forall rue may be broadened to apply when X is Increasing
by an amount other than I, or for a decreasing x .

4. Schematic Rles

In this subsection, we shall illustrate how the control rules may be used to derive
annotation rules for program schemata.

Consider, for example, the following single-loop, single-conditional, program schema:
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I I

p*: begin comment single-loop schema I
Z := C I
loop L*: assert ... 

until t(z) I
z :-f(z) I
if S() then z :0 g(z) else z := h(Z) fi.
repeat I

end. I

We shall assume that the Inverse functions -, ', and h- are available whenever
required by the rules.

The assignment axiom, applied to the initial assignment z:=c yields the invariant
9

assert z=c

before the loop. The forward loop-exit rude generates the Invariant -4(z) at the head of
the loop body, immediately after the until-clause, and then the forward assignment rule

gives -Vt(-(z)) preceding the conditional.:

assert -':(f(z))
if s(z) then z -= g(z) else z - A(Z) ft

The forward test rule propagates that Invariant forward, adding s(z) at the head of the
then-clause, and -v(z) at the head of the else-clause:

if s(z) then assert -t(f/(z)), s(z)
z :- g(z)

else a .. rt -t(f(z)), -V(z)
z :- A(z)

ft.

By pushing -'(-(z)) and s(z) through the then-branch assignment x:-g(z), and

• -,(f(z)) and -us(z) through the else-branch assignment z:-A(z) , we get

it 5(,) then z :- g(z)
assert -( (z))), sg'(,))

aelse z a (z)

asort -(f(h(O))) -v(h(z))iN". f'

i m l-Ir" , .. . . . • . . . .
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Combining the invariants from the two different paths - using the forward branch rule - one
gets

assert f(())) A .(g'())] V [-v(f(h-(z))) A -s(h-(z))]

after the conditional, at the end of the loop body.

The forward loop-body rule expressed the fact that If control Is at the head of a loop,
either the loop-initialization Invariant or the loop-body invariant must hold. Applying this
rule to our schema

assert Z=C

loop L*: assert ...
until 1(Z)
Z :- f(z)
if s(z) then Z := g(z) else z :a A(z) fi

assert [-'tV(g-(z))) A s(g(z))] V [-it((h(z))) A -s(h(z))]
repeat

we derive the loop Invariant

L*: assert z=c V [-t(f(g-(z)))As(g-())] V [-t'(lzllA-ilkhlx))]

This loop invariant embodies two facts about the control structure of this schema:

0 Whenever control is at L*, either the loop has just been entered, or the loop-exit
test was false the last time around the loop. That is,

L*: assert zc V -Aft(g(z))) V -t(F(h-(,)))

The first disjunct is the result of the Initialization path; the second states that the exit

test was false for the value of z when L* was last visited, assuming control came via
the then-path of the conditional; the third disjunct says the same for the case when
control came via the else-path.

* Whenever control is at L*, either the loop has just been entered, or the conditional
test was true the last time around and the then-path was taken, or the test was false
and the else-path was taken. That is,

I. L*: assert z-e V s((z)) V "v(A(z))

As another simple example, consider the loop schema

-TL .... .. L- - . p



144.

z := 0
loop L:

until t(z)
z := Z+
repeat

.E: .

By the label axiom

L: assert x=xL,

we get

L: assert z=zL

Thus, we can easily derive the following invarlants:

z := 0
assert z=0
loop L: assert zzz.

until t(z)
z := z+l
assert zl-=zL , -4(z-I)

repeat
E: assert t(z)

Now, by the forw4rd loop-body rule we can derive the invariant

L: assert z=OV-I(z-I)

and by the forall rule , we get

L: assert (V Z)(O<%zX=OV-1(G-i))

This simplifies to

L: assGrt (VrEN)l<z)-(l

'i-N



i !

PROGRAM ANNOTATION 145

combined with the Invariant t(z) that holds at E, it implies that the final value of z is
the minimum nonnegative integer satisfying the predicate t:

E: assert z(nin W)t(')

5. Heuristic Rules

In contrast with the above rules that are algorithmic in the sense that they derive
relations that are guaranteed to be Invariants, there is another class of rules, heuristic
rules, that can only suggest candidates for Invariants. These candidates must be verified.

As an example, consider the following conditional heuristic

if t then P'
assert a

else P"
assert

fi
L:
L. suggest a, 0

Since we know that a holds if the then-path P' is taken, while 8 holds if the
else-path P" is taken, clearly their disjunction aV# holds at L In either case (that was
expressed in the forward branch rule). However, since In constructing a program, a
conditional statement Is often used to achieve the same relation in alternative cases (cf.
the conditional synthesis rule, page 93), it is plausible that a (or, by the same token, i )
may hold true for both the then- and else-paths.

As mentioned eerhier, the output specification and user-supplied assertions are the
initial set of candidates. Candidates are propagated over assignment and conditional
statements using the same control rules as for Invariants. The top-down heuristic,

assert a
loop L:

until t
P
repeat

suggest 'Y

fact 'Y when a

L: suggest 1Y

iNONNI
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may be used to push a candidate (or Invariant) T backwards Into a loop. Though t:)Y
(i.e. -vtVY ) would be a sufficiently strong loop Invariant at L to establish Y' upon loop
exit, the heuristic suggests a stronger candidate, 'Y itself, at L . Since a necessary
condition for 'Y to be an invariant Is that it hold upon entrance to the loop, the second

antecedent of the rule requires that the Invariant a before the loop imply that 'Y holds.
The idea underlying this heuristic Is that an iterative loop is constructed in order to
achieve a conjunctive goal by placing one conjunct of the goal in the exit test, and
maintaining the other invariantly true (cf. the forward loop synthesis rule, page 97).

Wegbreit [1974] and Katz and Manna [1976] have suggested a more general form of
these two heuristics:

L: assert aVO

L: suggest a, .

* .However, as they remark, this heuristic should not be applied Indiscriminately to any
disjunctive Invariant. We would not, for example, want to replace all occurrences of an
Invariant x2O with the candidates x>O and x=O. Special cases, such as the above
conditional and top-down heuristics are needed to indicate where the strategy is relatively
likely to be profitable.

Returning to our Integer-division example

P.: begin, comment integer-diision program

B,: assert cEH, dENl I
(q,r) :- (O,c)

loop L0: assert .. .

until r<d
(q,r) := (q+I,r-d)
repeat

E,: suggest q<_cld, cld(q.l, qei, r.c-q.d
and,

the top-down /euristic suggests that of the candidates

I- E0: suggest q~cld, cld<q+l, qeZ, r=c-q d

those that hold upon entering the loop - when q-O and r-c - are also candidates at L,.

h. They are

1K,
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L.: suggest q cld, qeZ, r-c-q.d

The remaining candidate at ED , c/d<q. I , does not necessarily hold for q-O.

Each candidate must be checked for invarlance: it must hold for the loop-initialization
path and must be maintained true around the loop. Of the three candidates at L0 , the last

two, qeZ and r=c-q.d, have already been shown to be global invariants. To prove that
the first, q<c/d, is a loop Invariant at Lo , we first try to show that it is true when the
loop Is entered, i.e. that

O!cId .

The truth of this condition follows from the input specifications. Then we try to show that

if q:c/d Is true at L0 and the loop is continued, then qsc/d holds when control returns to

LO , .e.

. q!c/d A rtd : q~l~c/d

This condition, however, is not provable. Nevertheless, we can show that q:c/d is an
invariant by making use of the global invariant r=c-q.d. Substituting c-q.d for r in r~d

yields c-q-dd ; it follows that the above Implication holds and q Cld is an invariant at
L0 . Thus, while an attempt to directly verify the candidate q<-c/d failed, once we have

established that r-c-q.d is an invariant, we can also show that qScld Is an invariant.

Indeed, in general there may be insufficient information to prove that a candidate is
Invariant when it is first suggested, and only when other invariants are subsequently
discovered might it become possible to verify the candidate. Therefore, candidates should
be retained until all invariants and candidates have been generated. Unproved candidates
are also used by the heuristics to generate additional candidates. For example, the

top-down heuristic uses the as yet unproved candidate 'V to generate the loop candidate

Y' at L.

Another heuristic, valuable for loops with universally quantified output Invariants, is
the generalization heuristic rule

assert xaa
loop L: suggest ac(X,Y)

P
assert xuf(xL)
repeat

L: suggest (VrGea,f(a),f(f(a)) .... ,})a(',y)
b.e

1*
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Given a loop candidate a(x,y), we determine the set of values that the variable x takes
on. Then we have as a new candidate for a loop invariant that a still holds for all the
intermittent valdes between the initial value a and the current value x. For example, if

aEZ and f(x)-x+ I , then we get the candidate

L: suggest (VreZ)(a q5)a(Cy) .

This is a candidate and not an invariant since the program segment P may vary the value
of y In such a way as to destroy the relation a(x,y) for previous values of x.

Note that a candidate invariant must sometimes be replaced by a stronger candidate

in order to prove invariance. This Is analogous to other forms of proof by induction, where

it is often necessary to strengthen the desired theorem to carry out a proof. The reason

is that by strengthening the theorem to be proved, we are at the same time strengthening

the hypothesis that is used In the inductive step. We could not, for example, directly

prove that the relation (r~d)V(r=c-q.d) is a loop Invariant (that is the necessary condition

for r=c-q-d to hold after the loop), since this candidate is not preserved by the loop, i.e.

[ rd V r=c-q.d ] A rad :) [ r-d>_d V r-d=c-(qpl)-d ]

Is not provable. On the other hand, we can prove that the stronger relation r=c-q.d is an

invariant, since we have a stronger hypothesis on the left-hand side of the implication;

that is,

r=c-q.d A r~d D r-d=c-(q+l).d

can be proved. Clearly, once we establish that r=c-qod Is an invariant, it follows that

(rd)V(r-c-q.d) also Is.

Various specific methods of strengthening candidates have been discussed in the

literature (Wegbreit [1974], Katz and Manna (1976], Moriconi [1914] and others); they

are closely associated with methods of "top-down" structured programming. Related

techniques are used by Greif and Waldinger [1974] and Suzuki and ishihata (1977]. Also

the candidates that Basu and Misra [1975] and Morris and Wegbreit [1977] derive, using

the subgoal-induction method of verification, fall into this class.

6. Counters

A useful technique for proving certain properties of programs is the augmentation of a

program with counters of various sorts. For example, by initializing a counter to zero upon
IL =entering a loop and incrementing it by one with each Iteration, the value of the counter will

Indicate the number of times that the loop has been executed. Then, relations between

1.'
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the program variables and the counter can be found. By deriving upper/lower bounds on
the counter, the termination of the loop may be proved and time complexity analyzed.

As a simple example, reconsider our (now annotated) division program

I I
assert cell, dell 1, qeN, r-c-q.d in
P0: begin comment integer-didsion program

(q,r) : (0,c)
loop L0: assert q/d

l until r(d
(qr) := (qplr-d) I
repeat I

E.: assert r(d

.i end. I
I , I

The variable q is incremented by I with each loop Iteration and Is initialized to 0 ; thus,
it serves as a loop counter. Since the loop Invariant q:c/d gives an upper bound on the
value of the counter, and the counter is incremented with each loop iteration, the loop
must terminate. Since the output invariant r<d end global invariant rac-q.d yield a lower
bounds on the value of the counter, one can determine th total number of loop iterations.

Examples of the use of counters for proving termination have appeared in Katz and
Manna [Dec. 1975] and Luckham and Suzuki [1977]. Loop counters may also be used to
discover relations between variables by solving first-order difference equations. (See, for
example, Elspas [1974] and Katz and Manna [1976]; Netzer [1976] applies this
technique to recursive programs). Related work, making use of a small collection of
"loop-plans" to decompose program loops, may be found In Waters [1977]. McCarthy and
Talcott [1978] distinguish between extensional properties of programs that depend only on
the function computed by the program and intentional properties, such as space and time
requirements, that may be made explicit in derived programs containing counters.

In the following section, we demonstrate how two nontrivial programs can be
annotated using the annotation rules. These examples are taken from the program
annotation literature In order to demonstrate the power of our approach.

1t
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3. EXAMPLES

Our first example Is the annotation of a program intended to divide two real numbers.
The second example Is a program with nested loops designed to sort an array.

Example 1: Real Division.

Consider the following program P, purporting to approximate the quotient cid of two

nonnegative real numbers c and d , where c(d. Upon termination, the variable q should
be no greater than the exact quotient, and the difference between q and the quotient
must be less than a given positive tolerance #. The program, with its specifications
Included as assertions, 1s:

j P,: begin comment real-division program

B,: assert O5c(d, O(

I (q, qq, r, rr) := (0, 0, 1, d)
loop L,: assert ...

I until rge

if qq~rr<c then (q,qq):- (q~r,qq+rr) fi
I (r,rr) := (r12,rr12)
I repeat

E,: suggest I-/d, c/d<q~e

end.

Our goal Is to find loop Invariants at L, in order to verify the output candidates at E,. In
our presentation of the annotation of this program, we first apply the assignment rules and
then the control rules combined with a heuristic rule.

i. Asslpmeu Rules

As a first step, we attempt to derive simple Invariants by Ignoring the control
structure of the program, and considering only the assignment statements. This will yield
global Invarlants that hold throughout execution.

We first look for range Invarlants by considering all assignments to each variable. For
example, since the assignments to r are

-! : . ... - -- - , o -'
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r:-- r :a r/2

we can apply the multiplicatio rule

x := a0  x := X41 x := va t  In P
assert xca .*a.N... In P.

Taking I for a0 and I/2 for a,, we derive the global invariant

assert rel/2W in P,. (1)

In other words, T= 1/2n for some nonnegative Integer n . From this it Is possible to derive

lower and upper bounds on r, Le. 0(rS I , since r= I when n=0, while r= 1/2
n

approaches 0 as n grows large.

Similarly, applying the multiplication rule to the assignments to rr,

rr := d rr := rr/2

yields

assert rrEd/2W in P,. (2)

Since we are given that d>O, it follows that O<rr.d.

The assignments to q are

q:u q0 : .r.

Since we know (1) re 1/2W , these assignments may be Interpreted as the nondeterministic
assignments

q :6 0 q : 1 f.l/2 N

Using the set-addition rule 0

x :eS 0  x :e x+S, x :C x+s$ . .. In P
. use""rt xcSo,ES, T.S,.. ill P ,t

| - we conclude

assert fezII2 N ii P,.

• . k , .J ... , . .. ... ...... .. ' .. ..... ..
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This invariant states that q Is a finite sum of elements of the form 1/2", where n is
some nonnegative Integer. Since for any two such elements, one Is a multiple of the other,

it follows that the sum Is of the form m/27 , where m, nuN :

assert qeW/2N in P, (3)

(i.e. q is a dyadic rational number).

From (2) rred/2W and the assignments

qq := 0 qq :- qq+rr

we get by the same set-addition rule

assert qqed.E12 1 in P,

or

assert qqedJ/2N in P,. (4)

The above four invariants give the range of each of the four program variables. Now
we take up relations between pairs of variables by considering their respective

assignments. Consider, first, the variables r and rr. Their assignments are

(r,rr) :- (1,d) (r.rr) :- (/2, rrl2)

Each time one Is halved, so Is the other; therefore, the proportion between the initial
values of r and rr Is maintained throughout loop execution. This is an instance of the

multiplication -relation rule

(X, Y) :- (a,. b) (X,Y) :- (X-ua,,Y.ub,)

(Xy) : (x.,,.) . . . In P

assort x...bva.b.?In P,

yielding rl-di - I rri which simplifies to

assert rr.'d.r in P,. (5)

I.

"h.

1K
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(The rule may be matched with the assignments In the following manner: Clearly, the
assignment (x,Y):-(a, bo) matches with (r, rr):=(I, d) by Instantiating x, y, a,,, and b,

with r, rr, I , and d , respectively. Substituting these values In the second assignment

of the rule, we are left with (r, rr):=(r.uai, rr.ub,) to match with (r, rr):=(r/2, rr/2) . To

match r.ua, =-. r/2, divide both sides by r, leaving sa,  I 2. This In turn is effected

by Instantiating a, o I and u =* 1/2. It remains to match rr.(1I2) , =s rr/2 , i.e.

(i/2 )b , 1/2 , and b, Instantiates to I .)

The assignments to q and qq ore

(q, qq) := (0, 0) (q, qq) := (q~r, qq~rr)

Using (6) rr=d'r to substitute for rr in the assignment qq:-qq+rr , we have

(q, qq) :- (0, 0) (q, qq) :- (q~r. qq~d.r)

f -which is an instance of the addition -relation rule

(xy =(ao, bo) (x,y) :- (x~a,.u,y+b,.u)

(xy) :- (x*a,.vy.b,.v) . . . in P

assert a,.(y-b,)=b,.(x-a,) in P

Thus we have the global Invariant I.(qq-O)=d.(q-0), I.e.

assert qq=d.q in P, . (6)

In all, we have established the following global invariants:

assert rel/20, rred/2 N, qeH/2 t , qqedN/2H, rr=d.r, qq=d.q in P,

2. Control Rules

So far we have derived global Invariants from the assignment statements, Ignoring the
- control structure of the program. We turn now to local invarlants extracted from the

- program structure.

1.
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By applying the asinment axiom

x := a

assert x=a

to the multiple assignment at the beginning of the program we get the local invariant

assert q=O, qr=O, r=1, rrd

just prior to the loop. The loop axiom,

loop P'
until t
assert --t
p,3

repeat
assert 9

yields r>e at the head of the loop body and re at E1. Thus far, we have the annotated

program segment

assert q-O, qq=O, r-1, rrad
loop L,: assert .. .

until rSe

assert r>e
if qq~rrSc then (q, qq) :(q~r, qqrr) fi
(r, rr) := (r/2, rrI2)
repeat

E,: assert re.

Applying the forward teit rule,

assert a
if I then L':

p'
else L":

• fi

L: assert a, t
L": assert a, -,

to the conditional statement of the loop,

if qqrrgc thean (q, Wq) - (qr, q+rr) fi

"- , , , - , ,. ,,
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yields

if qq~rrSc then assert r)e, qq rr
(q. qq) :- (q+r, qqrr)

else assert r>e, c(qq~rr
ti.

Using a variant of the forward assignmuRt ruld,

assert a(u,)
x :.;
L:

L: "sert ( ,j)

where i does not appear in a(, -), the assignment of the then-branch transform the
Invariant qq~rrS.c into qqSc and leaves r)e unchanged. We obtain

if qq~rrSc then (q, qq) :- (q~r, qq~rr)
assert r>e, qqSc

else assert r)t, c(qq~rr
ft.

We may now apply the forward branch rul

if t then P'
assert a

else P"
assert 6

fti
L:

L: assert avo ,

to the two possible outcomes of the conditional. We obtain the invariant

assert (r>Aqqsc) V (rY>Ac(qq+rr)

which simplifies to Just

assert r)e

since r>e appears in both disjuncts while qqScVc(qqrr is Implied by the global invariant
(2) rr)O ( qqScVc(qq Is a tautology, and If rr is positive, then c(qf Implies c(qqrr).

i~i . . ..1
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By application of the forward usslpusWi rule

assort a(x, y)
x :uf(x. Y)
L:

L: assert avf(x,y),Y)

to the Invariant r>e we get

assert 2-r)#

at the end of the loop. By applying the forward loo p-body rule,

assert a
loop L:

p
assort8
repeat

L: assert crV9

taking 2*r)e for 8,we derive the lopInvariant

L:assort (q-qq-OArulArrud) V 2.r~e

In order to simplify the presentation, we &hall use Instead the weaker

L:assert ral V 2*r~e .(7)

3. Heuristic Rules

Recall that the control rules gave us

if qq~rrc theu (q, qq) :- (14r, qq~rr)
assert r)e, qqSc

else assert r>e, c(qq+rr
fi

but that the disjunction of qq~gc and c(qq~rr turned out to be a tautology. The conditionlal

heuristic
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If t then P'
assert a

else P"

assert 0
fi

L:

L: suggest a, 

suggests that each of the two invariants, qq c and c(qq.rr, that hold at the end of one
of the conditional paths, may be an invariant for both paths. So we have the candidate

suggest qq<c, c<qq+rr

following the conditional and preceding the assignment

(r, rr) :- (r/2, rr/2) .

By application of the forward assignment rule
I

suggest 'Y(x,)
x := f(x.,)
L:

L: suggest 7'Y-(x,y),y)

to the two candidates, we get

suggest qq c, c(qq+2.rr

at the end of the loop.

Finally, by applying the forward Ioop-body rule,

assert a
loop L:

P
suggest 'Y
repeat

L: suggest aVV

we get the candidates

L,: suggest (q=qq=OArIArrd)Vfqfc, (q-qqxOArulArr=d)Vc<qq+2.rr

Both candidates may be simplified, since their first disjunct implies their second, leaving

• r il . . . I I l iiii . -
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L,: suggest qqc, c(qq.2.rr

These two candidates can indeed be proved to be Invariants: The first candidate, qq_<c,
derived from the initialization and then-paths, is unaffected by the else-path which leaves

the value of qq unchanged. Similarly, the other candidate, c(qq+2*rr , derived from the
initialization and else-paths, is maintained true by the then-path. So we have the loop

invariants

L,: assert qq~c, c(qq+2.rr. (8)

Note that we have not yet made any use of the candidates

E,: suggest q~cld, cld<q+e

suggested by the output specification. For completeness, we shall apply a heuristic to
these candidates, though no new Invarlants will be derived. The top-down heuristic rule

assert a
loop L:

until t
P
repeat

suggest 'Y

fact 'Y when a

L: suggest Y
I

suggests that the output candidate q.c/d may itself be a loop invariant, since It is true
upon entering the loop. Indeed It is an invariant (it is Implied by the loop invariant qq_<c

and the global Invariant qq-q.d ). On the other hand, the second output candidate,
cld<q+e , does not even hold for the Initialization path, when q=O.

Since there are no assignments between the loop and the end of the program, all the
loop invariants may be pushed forward unchanged, and hold upon termination. The output
Invariants Include

E,: assert (rulV2.r>#), qqc , C<qq4?.rr, rSe. (9)

These invarlants, along with the global Invariants

assert rr-d.r, qq-d.q in P1

Imply qcl/d as specified. However, they do not imply c/d(q+e, only cld(q+2.e. in fact,
our program as given is Incorrect. In another chapter, we have already seen how such
Invariants may be used to guide the debugging of the program.

1K



PROGRAM ANNOTATION 159

4. Loop Counters

By introducing an imaginary loop counter n - initialized to 0 upon entering the loop
and Incremented by I with each iteration - one may derive relation between the program
variables and the number of iterations.

The extended program, annotated with some of the Invariants we have already found,
is:

assert rr=d.r, qq=d.q, rei/214, tret12W in

P,: begin comment extended real-division program

B,: assert O<c(d, O<e

(q,qq,r,rr) := (0,0,1,d)

n := 0

loop L.: assert (r=1V2.r>E), qq<c, c<qq+2.rr

until r~e

if qq+rrsc then (q,qq) := (q+r,qq+rr) fi

(rrr) :- (r/2,rr/2)
n .= In |

repeat

E.: assert (r=iV2.r>e), qqgc, c<qq+2.rr, rge
end

Obviously, we may

assert neW in P, (10)

For the variables r and n , we have the assignments

(r,n) :- (1,0) (r,n) := (r/2,n+l)

and we can apply the linear rule

(x,y) :- (ao,b o) (x,y) :- (,a,.x~aY+b,) in P

assert [x.(a,-l)a,,.ab0 .a0 .(a,-l)aj1,.a- in Pa.
With this rule we get the global invariant

assert [r.(I/2-1)+0i.(I/2)0-[I.(1/2-1)+0]1.(I/2)
n in P,

..
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which simplifies to

.

.
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assert r=l/2 in P1  (11)

Applying the same rule to the assignments

(rr, n) :- (d,O) (rr,n) := (rr/2,.*l)

we deduce

assert rr=d/2 n in P0 . (12)

With these loop-counter Invariants, the total number of loop iterations as a function of

the input values may be determined. Using (11), we can substitute I/2 n for r in the

loop Invariant (7) r=1V2.r)e and in the output invariant (9) r<e, and get i/2"=IV2 /2n)e

at L, and i/21<5e at E,. Taking the logarithm ( t is positive), we have the upper bound

n=O V n(-logte+

and lower bound

-loge<n

on the number of loop iterations n. Note that by finding a loop invariant giving an upper
bound on the number of Iterations, we have actually proved that the loop terminates.

Combining both bounds at E I gives (assuming no 0)

-lDg~e~n(-loge+ I

or, since n is an Integer (10), it is equal to the one integer lying between its lower and
upper bound -ILogeJ. Thus we have the output invariant

E,: assert n=0 V n-log.!J. (13)

Since n is the number of times the loop was executed before termination, we have
derived the desired expression for the time complexity of the loop.

I. Example 2: Selection Sort.

The previous example contained only one loop and dealt with simple variables. As a
more challenging example, we annotate an array-manipulation program containing nested
loops. The program Is Intended to sort the array A[O:n] of n+l elements A[O],
A[],..., A[n] in ascending sequence. The output specification can therefore be

"N expressed as



(VtXO<Sn)A[)r]!A[r +I]) A bag(A[O:n])-bag(A,(j O:n])

where bag(A[O:n])=bag(Az[O:n ] ) means that the multiset (bag) of elements in the array

segment A[O:n] is equal to the multiset of elements In the Initial value of the array A 5 ,.

i.e. A[O:n] Is a permutation of At [O:n] The program Is:

P,: begin comment selection-sort program

Bt: assert neN

j :.- 0
loop L,: assert .. .

until iZn

P,: begin
(Y,m,k) :z i|A~]l

I.loop L,: assert ... 

until J)n

if A(](m then (mn,k):= (AU],J) fi

J :=j* I
repeat

end

repeat

E2: suggest (Vr)(O<n)(A[r]:A[ I ]), bag(A[O:n])=bag(As.O:n]).

end

1. Assignment Rules

We first try to determine the range of the program variables. The variables in the
program P, are i, J , m, ,and A ; the Inner loop (the program segment P, )sets the

variables J, k and m , and leaves I and A unchanged.

K• The assignments to I are
i i :-f 0 1 :z i+l I

which by the addition rule gives the global invariant

assert IJN in Pt . (1)

" "*. °
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The assignments to j are

j := i+I J :- J+i

Since we know it, we may substitute N for i to obtain the nondeterministic
assignments

j : N J :N+j1l ,

and by the set-addition rule we get JeW+ I +1, which simplifies to

assert JeN, l<J in P2 . (2)

(Recall that these global invariants only hold after J:=l+ is executed for the first time.)
Since within P, the value of 1 is unchanged, it may be regarded as constant. We can

therefore apply the addition rule to the assignments to j, J:-+ I and J:=J+I , obtaining

assert Jei+I+N in P,

and consequently

assert i1j in Ps (3)

The assignments to k are

k:-i k:=j.

Using (1) and (2) to substitute N for I and j , we have

h .:eN k :e i

and from the simple set-union rule

x :C S0 x :e S, in P

assert xeSoUW, In P

it follows that

assert ke in Pt (4)

In P,, as we have seen, i Is constant and jeL#lik, so we substitute i+I+N for J In

the assignments to k to obtain

By the same set-union rule, we have that A belongs to the union of I and i+N4.

Therefore kcidN , and

p
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assert iS<k in P, (6)

Finally, for m we have the assignments

m :- 4[1] in :- =

Using (1) ieN and (2) JeN to substitute N for i and J , we get

m :E ,[N] m :E ,[N] .

Thus, by the set-union rule, we obtain

assert meA[] in P1 . (a)

In the following subsections, we shall apply the control rules and heuristics first to the

Inner loop and then to the outer loop.

2. Control Rules - Inner Loop

The inner loop of the program Is

Q,m,k) := (i+,Ai.)
loop L,: assert . . .

until J>n

if AU]<m then. (m, k) :- (AU].J) fi
J :- J+I
repeat

At any point in a program, the disjunction of what Is known from the paths leading to that

point is an Invariant. We shall use the control rules to obtain loop invariants at label L,,

by considering the three paths leading to L, : the Initialization path from L. to L,, the

loop-body path from L, to L, via the then-branch of the conditional, and the loop-body

path via the else-branch of the conditional.

From the Initialization path, we have upon entering the Inner loop

L(n A J=l+ A m-A[l] A kha (7)

The conjunct LUn derives from the negation of the outer-loop exit test, using the loop

4xLkM

2"
= 1 --.
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loop P'
until t
assert -4
pro
repeat

assert t

By applying the assignment axiom

X := a
assert x=a

to the assignment of the initialization path

(j, m, A) := (i~l, A~i], i),

we obtain the three Invariants Jzi. I , m=A[i] and ki.

At the head of the inner-loop body, we have the invariant

j<_n A ifiis A A=AL, A J=JL A k=AoL, A m=mL, I

where xL , for some variable x and label L , denotes the value of x when control was

last at L. The first conjunct Is the negation of the exit test and the other conjuncts,
which are generated at L, using the labe axiom,

L: 'assert xfx,

have been pushed passed the exit test unchanged. This is an application of the forward
loop-exit rule

loop P'
assert a
until t
PD:
pit

repeat
L':

I L': assert a, -4| Lot: assort a, t

to the Inner loop. After executing the assignment in the then-branch of the conditional,
• • we know

iNI
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j~n A m-Arj] A kj A i.iL, A A.AL, A JAJL,

The second and third conjuncts derive from the assignments (by the assignment axiom); all
the other conjuncts have been propagated forward by the firward test nde

assert a
if I then L':

PFp,1else L""

fi
L': assert a, t
L": assert a, -'t

and forward assignment rule

assert a(x,y)
x :. f(x,Y)

L: assert a(f(x,y),y)

After the (empty) else-branch of the conditional, we have

Jin A mSA(J] A 1L1.9 A A=AL, A JJL, A khL, A mmL

The second conjunct Is the negation of the conditional test; It Is derived from the
conditional axiom

if t then assert t
p1

else assert -4
PPI

ft.

Since we must have traversed either the then- or else-branch, we know by the forward
branch rule

if t then Pt
assert a

. else P"
assert 6

L:
A L: assert aVO
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that after the conditional

(j!n A m:A[j] A k.J A OiL, A ANAL A JJi, )

V ( J5n A m<AUJ A l=SLL A A=AL, A J=JL A kAkL, A m=mL. )

Thus, at the end of the loop body, after incrementing J by I , we have (by the forward
assignment ride)

(j-1:<n A m=AU-I] A kfJ-I A i1 1 L, A AfAL. A J-IJL. ) (8)

V (J-I<_n A m<Aj-I] A 1 L, A A=AL, A J-I=JL A AALh A mml ' )

Furthermore, If a relation a holds upon entering a loop, and we know that the loop
body either does not change the values of the variables In a, or reachieves a for the
new values of the variables, then a is a loop invariant. This Is the protected-invariant ride

t. assert a(x)
loop L:

P
assert a(x)VxNxL
repeat

L: assert a(x)

By substituting k for J-i in the first disjunct of (8), we may derive k~n and m-A[k].

Thus, at the end of the loop body we know (kAnAm=A[k]) V (A=A1..AkLkh..Am-m.). This

invariant is of the form e(x)VxmXL, taking a(x) to be kSnAm=A[k] and x to be the

variables A, k and m . The first disjunct indicates that the then-path achieves *(x) ;
the second disjunct states that the else-path leaves A, k and m unchanged, From
invariant (7) preceding the loop, we can derive that initially kS. and m-A[k]. So we
have

L,: assert k~n, m-A[k] . (9)

Similarly, by (8) we have Lni. for both loop-body paths, and by (7) we have L(n upon

entering the loop. Taking a(i) to be I(n , we get

LS: assert i(n . (10)

DIsjoinlfg invariant (7) of the Initialization path and (8) from the loop-body path, we
get the following Inner-loop Invariant (by the forward loop-body rule):

LIS: assert ( i(n A Jv+Ii A u-A[i] A W-! )
V (J-iSn A moA.j-l] A A-J-1 )
V J-Csn A nSAJ-l] ) (11)

p
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(The conjuncta refering to the previous value of a variable at L, have been removed.)

Now we extract the "common denominator" of the disjuncts In ( 1) arising from the
different paths. The relation J-Iln appears in the second two disjuncts and is implied by
the two conjuncts i(n and J-+ I of the first disjunct, so we get the invariant

L,: assert J-Isn . (12)

In the first disjunct of (11) we have Ji.lAmuA[i], in the second we have m=AJ-l],
while In the third we have m:5AU- I] , thus for all paths

L,: assert mSA[J-I] . (13)

Alternatively, we could have used the conditional heuristic rule, rather than the
protected-linvrlant rule, to generate these assertions. The heuristic, however, would have
yielded candidates requiring further verification.

.
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3. Generalizatio Heuristic - Inner Loop

The generalization heuristic rule Is particularly valuable for loops Involving arrays:

assert x=a
loop L: assert a(x,y)

P

assert x=xL+I

repeat

L: suggest (Vr)(a<5r5x)a(r,y).

To apply this heuristic, reconsider the Inner-loop invariant (13) &aY, M): m<5A-|] at L..

Initially J is i+1 , and at the end of the loop body J=JL +1 , so, as an invariant candidate,

we try

L,: suggest (Vr)(I<_J)(mSAr-i])
* 5.

which we shall abbreviate as m<A[i'.j-i]. Checking the candidate for the then- and
else-paths determines that it is in fact an Invariant; thus, we have for the inner loop

L,: assert m_<4[j-] . (14)

So far we have derived the following Inner-loop Invariants

L,: assert khn, m=A[k], l(n, J-1<5, mSA[i.1-].

We turn now to consider the outer loop.

4. Control Rules - Outer Loop

Using the forward loop-exit rule , the invariants at L, may be propagated past the exit

test J>n , obtaining

assert Asn, m-A[k], t<n, J-i5n, m;A(L-|], J>n

Just prior to the assignment

Propagating these Invariants post the assignment, we get the following invariants at the

end of the outer-loop body:

assert kSn, in, mSA[ij-I], m-A(i-I], J-ln. (15)

I II - -.. . . . . -... .. . .
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The Invariant kAn Is propagated unchanged. The invariant i(n becomes i-I(n after
executing i:-l+ I (by the forward assignment rule ), which is equivalent to i~n (since both
I and n are Integers). The Invariant mSA[1:J-I] still holds after assigning A[i] to
4[k], since m<A[i] held before and consequently m<A[k] holds now as well; however,
after the assignment to A[l], It becomes mSA[i.iJ-I]. (To propagate invariants over an
array assignment, there Is a forward array-assignmen rule

assert a(A,z)
A y] :- f(A[y],)
L:

L: assert a(assgn(A,y,f'(A[y],z)),z)

where the array function assign(A,y,z) yields A with z replacing A[y], and

f-(f(A[y], z), z)=A[y]. This rule states that after the assignment the invariant still holds

for alr the elements of A , save A[y]; it also holds for old value of A[Y], f-(AL7], z). In
our case, the old value of A[i) cannot be reconstructed, so the Index I is removed from
the range [iJ-i].) After incrementing i, mSA[+'.Ij-I] becomes m:5A[j-I]: . The
assignment A[i]:=m generates the invariant m=A[i] (by the assignment axiom), which
becomes m=Ali-i] after Incrementing I . Finally, the Invariants j-ISn and j>n simplify

to j- =n (since (2) JeW).

Clearly upon entering the outer loop (by the assignment axiom)

i=O

Thus, by the forward loop-body rule , we have the outer-loop Invariant

L.: assert 1=0 V (k<SnNSnAmSA[l.J-I]AmmA[l-I]AJ-In)

with the following two corollaries:

L.: assert l.OVA[i-I]<A[i:n] (16)

(the second disjunct follows from mSA[i.i-I], m=A[l-l] and J-=n ),.and

L,: assqrt l;n (17)

(since 1-0 Implies iSn for neW ). If we use the forward loop-exit rule to push 15.n past

the exit test ln and out of the loop, we get the output invariant SnNn at £. , or,

E.: assert l-n . (18)

- -iV -- ,-...... .....
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5. Heisrttics - Outer Lop

We use the generalization heuristic rule to generalize (15) for the counter i, where
a(i, A) is iuOVA[i-I]<A[i:n]. Since i is initially 0, this yields the candidate

L.: suggest (Vl)(O. i)(r=OVA( -i ]<A[r:n])

This Is equivalent to

L.: suggest (V)(O$5i)(A[f]<A[r I:n])

and states, in effect, that the array elements A[0:-I] are sorted and that they are all
smaller than the array elements Ali:n]. Though the array A is modified along the
inner-loop exit path by the assignments

(A[k], A[]) := (A[i], m)

using iSk~n and m=A[k] (from (5) and (9)), invarlance along that path can be shown.I

Since iSk , the assignment to A[k] cannot destroy the order of A[O:i-i] , and
clearly an assignment to A[i] has no effect. Since both I and k are in the range
[i:n] , the candidate Implies that A[O:i-l]SA[i] and A[O:i-I]SA[k]. So assigning A[i] to
A[k] does not affect the relation. Lastly, since m is equal to the previous value of
A[k], assigning that value to A[i] also preserves the Invariant. The effect is to

exchange the values of A[k] and A[i].

So we have the outer-loop Invariant

Lt: assert (Vr)(0< (i)(A[C]<5A[ I:n]) . (19)

This may be pushed out of the loop to E , and with (18), .e. ian at E., Implies the first

conjunct of the output specification,

The top-down heuristic rue

I

I ,A

'IN[ .. .. ... ...
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assert a
loop L:

until t
P
repeat

suggest 7

fact 'Y when a

L: suggest 7

suggests that the output specification bag(A[O:n])-bag(AO.[O:n]), which i obviously true

initially, is itself a candidate at L1 . Snce the assignments to A have the effect of

exchanging the values of A[k] and A[i], we have the invariant

.: assert bag(A[O:n]J)-g(A O[O:3]) (20)
V.

6. Loop Ceuntes

To determine the time complexity of this program, we add three counters: one for the

outer loop (the variable i Is effectively an outer-loop counter), one for the inner loop (call

it R, ), and a third to sum the total number of inner-loop executions (call it n* ).

The extended program, annotated with some of the more Important loop Und output

assertions, is:

I. |

K I -
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assert lEN in
P2: begin comment ext ended selection-sort program

B,: assert nEl I
I :.0
n* :Z 0

loop L,: assert itn, (VD(O<S'<)(A[']<A[r:n]), bag(A[O:n])-bag(As[O:n])

Iuntil in

I assert J,AkEN in
* P,: beginI (J,m,k) := (i~e.,A~i],i)

n, := 0

loop L,: assert i(n, i(<n+l, i:SkSn, m=A[k], m<A[i:J-i]

until j)n
if A[j]<m then (m,k):= (AD],j) fi
j :=j+lI

In, :C $+
repeat

(A[k],A[i],i) := (A[i], m,1+ 1)

In  := n.nS
end

repeat

E,: assert i=n, (Vr)(0:SCi)(A[r]<-A[r+I:n]), bag(A[O:n])=bag(A [O:n])

end I

By the addition-relation rule , we can easily determine that n, is equal to J-i-I, since

j is Initialized to i+I and is Incremented by I . We know from (16) that J=n l when the
Inner loop Is left, and It follows that the Inner loop is executed n-i times for each
outer-loop Iteration. With each outer-loop Iteration, Le. each time i is incremented by I
the total number of inner-loop Iterations Increases by n-I. Using the following quadratic
rule

(x,y) := (a o,b o) (x.y) := (x+a,,y+b..x+b) in P

assert (y-bo).2.a22=(x-a0).[b,.(x~ao-at)+2.a,(bt+b,.a)] in P .

and taking x to be i (initially 0 and incremented by I ) and y to be the total number
of Inner-loop executions (incremented by n-I), It may be determined that

?b
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y.2-.[-I.(G-i)+2.n] is an Invariant. (Recall the use In the previous chapter, page 122, of
the inverse of this rule.) We have already seen that upon termination in , i.e. the outer

loop Is iterated a total of n times. Therefore, when the outer loop is left, n*=n.(n+l)/2,
i.e. the total number of Inner-loop executions is n.(n+1)12.

In a sense, annotating programs is "putting the cart before the horse" as the whole
tenor of "structured programming" stresses developing Invariants hand in hand with the
code, and not ex post facto, as annotation implies. Nevertheless, the development of
automatic annotation systems is important for a number of reasons:

* The real world contains many undocumented, underdocumented, and misdocumented
programs. Even annotated programs appearing in structured-programming textbooks have
fallen prey to error. A system that could help in documenting such programs would clearly
be of utility.

. Ultimately, It Is the responsibility of the programmer to guarantee the correctness of
his product. Even If he uses one of the current automatic verification systems, he Is
required to supply most, if not all, of the necessary invariant assertions. The goal of
automatic program annotation Is to relieve the programmer of this burden. Agreed, no
present or foreseeable system Is likely discover very subtle Invariants, or those based on
deep mathematical theorems, but such invariants are likely to be uppermost in the
programmer's mind anyway. It Is the "obvious" Invariants that he finds annoying to have to
formulate, and indeed often forgets, causing the system to fall in its proof. For example,
the Invariant kSn is crucial for the correctness of the selection sort program; if the
programmer omits It, the verification system will not be able to 'prove correctness.
Fortunately, It is just these invarlants that an automatic annotation system would find easy
to derive. Similarly, Invariants needed to demonstrate the absence of runtime errors are
usually quite simple, and there has already been some success in providing current
verification systems with the capability of generating them.

* Annotation research attempts to formalize the intuitions that lie behind well-designed
programs; thus, It has Important Implications for automatic program synthesis. In fact, the
same rules that we used to generate invariants from programs may be Inverted to
generate programs from Invarlants.

* Arul,.stlon techniques may be used to discover important properties of programs other
then correctness. For example, one may wish to analyze the complexity of an algorithm or
compoe the efficiency of two correct programs. This Is not usually the programmer's
,.s ene@0 lty. Indeed, even simple programs are sometimes very difficult to analyze (cf.

immmm and Knuth [ 19 78J).
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